MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crim Structured version   Unicode version

Theorem crim 13099
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )

Proof of Theorem crim
StepHypRef Expression
1 recn 9614 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
2 ax-icn 9583 . . . . 5  |-  _i  e.  CC
3 recn 9614 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
4 mulcl 9608 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
52, 3, 4sylancr 663 . . . 4  |-  ( B  e.  RR  ->  (
_i  x.  B )  e.  CC )
6 addcl 9606 . . . 4  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
71, 5, 6syl2an 477 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
8 imval 13091 . . 3  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Im `  ( A  +  ( _i  x.  B ) ) )  =  ( Re `  ( ( A  +  ( _i  x.  B
) )  /  _i ) ) )
97, 8syl 17 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  ( Re `  ( ( A  +  ( _i  x.  B
) )  /  _i ) ) )
102, 4mpan 670 . . . . . 6  |-  ( B  e.  CC  ->  (
_i  x.  B )  e.  CC )
11 ine0 10035 . . . . . . 7  |-  _i  =/=  0
12 divdir 10273 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC  /\  ( _i  e.  CC  /\  _i  =/=  0 ) )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
13123expa 1199 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  /\  ( _i  e.  CC  /\  _i  =/=  0
) )  ->  (
( A  +  ( _i  x.  B ) )  /  _i )  =  ( ( A  /  _i )  +  ( ( _i  x.  B )  /  _i ) ) )
142, 11, 13mpanr12 685 . . . . . 6  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( ( A  +  ( _i  x.  B ) )  /  _i )  =  (
( A  /  _i )  +  ( (
_i  x.  B )  /  _i ) ) )
1510, 14sylan2 474 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B
) )  /  _i )  =  ( ( A  /  _i )  +  ( ( _i  x.  B )  /  _i ) ) )
16 divrec2 10267 . . . . . . . 8  |-  ( ( A  e.  CC  /\  _i  e.  CC  /\  _i  =/=  0 )  ->  ( A  /  _i )  =  ( ( 1  /  _i )  x.  A
) )
172, 11, 16mp3an23 1320 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  /  _i )  =  ( ( 1  /  _i )  x.  A
) )
18 irec 12314 . . . . . . . . 9  |-  ( 1  /  _i )  = 
-u _i
1918oveq1i 6290 . . . . . . . 8  |-  ( ( 1  /  _i )  x.  A )  =  ( -u _i  x.  A )
2019a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  (
( 1  /  _i )  x.  A )  =  ( -u _i  x.  A ) )
21 mulneg12 10038 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  =  ( _i  x.  -u A
) )
222, 21mpan 670 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  =  ( _i  x.  -u A ) )
2317, 20, 223eqtrd 2449 . . . . . 6  |-  ( A  e.  CC  ->  ( A  /  _i )  =  ( _i  x.  -u A
) )
24 divcan3 10274 . . . . . . 7  |-  ( ( B  e.  CC  /\  _i  e.  CC  /\  _i  =/=  0 )  ->  (
( _i  x.  B
)  /  _i )  =  B )
252, 11, 24mp3an23 1320 . . . . . 6  |-  ( B  e.  CC  ->  (
( _i  x.  B
)  /  _i )  =  B )
2623, 25oveqan12d 6299 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  /  _i )  +  (
( _i  x.  B
)  /  _i ) )  =  ( ( _i  x.  -u A
)  +  B ) )
27 negcl 9858 . . . . . . 7  |-  ( A  e.  CC  ->  -u A  e.  CC )
28 mulcl 9608 . . . . . . 7  |-  ( ( _i  e.  CC  /\  -u A  e.  CC )  ->  ( _i  x.  -u A )  e.  CC )
292, 27, 28sylancr 663 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  -u A )  e.  CC )
30 addcom 9802 . . . . . 6  |-  ( ( ( _i  x.  -u A
)  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  -u A )  +  B
)  =  ( B  +  ( _i  x.  -u A ) ) )
3129, 30sylan 471 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  -u A )  +  B
)  =  ( B  +  ( _i  x.  -u A ) ) )
3215, 26, 313eqtrrd 2450 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  ( _i  x.  -u A
) )  =  ( ( A  +  ( _i  x.  B ) )  /  _i ) )
331, 3, 32syl2an 477 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  +  ( _i  x.  -u A
) )  =  ( ( A  +  ( _i  x.  B ) )  /  _i ) )
3433fveq2d 5855 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( B  +  ( _i  x.  -u A ) ) )  =  ( Re
`  ( ( A  +  ( _i  x.  B ) )  /  _i ) ) )
35 id 23 . . 3  |-  ( B  e.  RR  ->  B  e.  RR )
36 renegcl 9920 . . 3  |-  ( A  e.  RR  ->  -u A  e.  RR )
37 crre 13098 . . 3  |-  ( ( B  e.  RR  /\  -u A  e.  RR )  ->  ( Re `  ( B  +  (
_i  x.  -u A ) ) )  =  B )
3835, 36, 37syl2anr 478 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( B  +  ( _i  x.  -u A ) ) )  =  B )
399, 34, 383eqtr2d 2451 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1407    e. wcel 1844    =/= wne 2600   ` cfv 5571  (class class class)co 6280   CCcc 9522   RRcr 9523   0cc0 9524   1c1 9525   _ici 9526    + caddc 9527    x. cmul 9529   -ucneg 9844    / cdiv 10249   Recre 13081   Imcim 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-po 4746  df-so 4747  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-2 10637  df-cj 13083  df-re 13084  df-im 13085
This theorem is referenced by:  replim  13100  reim0  13102  remullem  13112  imcj  13116  imneg  13117  imadd  13118  imi  13141  crimi  13177  crimd  13216  absreimsq  13276  4sqlem4  14681  logneg  23269  lognegb  23271  basellem3  23739  2sqlem2  24022  cnre2csqima  28359
  Copyright terms: Public domain W3C validator