MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  creur Structured version   Unicode version

Theorem creur 10446
Description: The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
creur  |-  ( A  e.  CC  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem creur
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 9503 . 2  |-  ( A  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  A  =  ( z  +  ( _i  x.  w ) ) )
2 cru 10444 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  =  ( z  +  ( _i  x.  w ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
32ancoms 451 . . . . . . . . . 10  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  =  ( z  +  ( _i  x.  w ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
4 eqcom 2391 . . . . . . . . . 10  |-  ( ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) )  <->  ( x  +  ( _i  x.  y ) )  =  ( z  +  ( _i  x.  w ) ) )
5 ancom 448 . . . . . . . . . 10  |-  ( ( y  =  w  /\  x  =  z )  <->  ( x  =  z  /\  y  =  w )
)
63, 4, 53bitr4g 288 . . . . . . . . 9  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <-> 
( y  =  w  /\  x  =  z ) ) )
76anassrs 646 . . . . . . . 8  |-  ( ( ( ( z  e.  RR  /\  w  e.  RR )  /\  x  e.  RR )  /\  y  e.  RR )  ->  (
( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  ( y  =  w  /\  x  =  z ) ) )
87rexbidva 2890 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  x  e.  RR )  ->  ( E. y  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <->  E. y  e.  RR  ( y  =  w  /\  x  =  z ) ) )
9 biidd 237 . . . . . . . . 9  |-  ( y  =  w  ->  (
x  =  z  <->  x  =  z ) )
109ceqsrexv 3158 . . . . . . . 8  |-  ( w  e.  RR  ->  ( E. y  e.  RR  ( y  =  w  /\  x  =  z )  <->  x  =  z
) )
1110ad2antlr 724 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  x  e.  RR )  ->  ( E. y  e.  RR  ( y  =  w  /\  x  =  z )  <->  x  =  z ) )
128, 11bitrd 253 . . . . . 6  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  x  e.  RR )  ->  ( E. y  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <-> 
x  =  z ) )
1312ralrimiva 2796 . . . . 5  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  A. x  e.  RR  ( E. y  e.  RR  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  x  =  z ) )
14 reu6i 3215 . . . . 5  |-  ( ( z  e.  RR  /\  A. x  e.  RR  ( E. y  e.  RR  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  x  =  z ) )  ->  E! x  e.  RR  E. y  e.  RR  (
z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) ) )
1513, 14syldan 468 . . . 4  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  E! x  e.  RR  E. y  e.  RR  (
z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) ) )
16 eqeq1 2386 . . . . . 6  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  <->  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) ) ) )
1716rexbidv 2893 . . . . 5  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) )  <->  E. y  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) ) ) )
1817reubidv 2967 . . . 4  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  <->  E! x  e.  RR  E. y  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) ) ) )
1915, 18syl5ibrcom 222 . . 3  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  ( A  =  ( z  +  ( _i  x.  w ) )  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) ) )
2019rexlimivv 2879 . 2  |-  ( E. z  e.  RR  E. w  e.  RR  A  =  ( z  +  ( _i  x.  w
) )  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
211, 20syl 16 1  |-  ( A  e.  CC  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826   A.wral 2732   E.wrex 2733   E!wreu 2734  (class class class)co 6196   CCcc 9401   RRcr 9402   _ici 9405    + caddc 9406    x. cmul 9408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-po 4714  df-so 4715  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator