MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsubdi Structured version   Unicode version

Theorem cphsubdi 20569
Description: Distributive law for inner product subtraction. Complex version of ipsubdi 17914. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h  |-  .,  =  ( .i `  W )
cphipcj.v  |-  V  =  ( Base `  W
)
cphsubdir.m  |-  .-  =  ( -g `  W )
Assertion
Ref Expression
cphsubdi  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  .,  ( B  .-  C
) )  =  ( ( A  .,  B
)  -  ( A 
.,  C ) ) )

Proof of Theorem cphsubdi
StepHypRef Expression
1 cphphl 20532 . . 3  |-  ( W  e.  CPreHil  ->  W  e.  PreHil )
2 eqid 2433 . . . 4  |-  (Scalar `  W )  =  (Scalar `  W )
3 cphipcj.h . . . 4  |-  .,  =  ( .i `  W )
4 cphipcj.v . . . 4  |-  V  =  ( Base `  W
)
5 cphsubdir.m . . . 4  |-  .-  =  ( -g `  W )
6 eqid 2433 . . . 4  |-  ( -g `  (Scalar `  W )
)  =  ( -g `  (Scalar `  W )
)
72, 3, 4, 5, 6ipsubdi 17914 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  .,  ( B  .-  C
) )  =  ( ( A  .,  B
) ( -g `  (Scalar `  W ) ) ( A  .,  C ) ) )
81, 7sylan 468 . 2  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  .,  ( B  .-  C
) )  =  ( ( A  .,  B
) ( -g `  (Scalar `  W ) ) ( A  .,  C ) ) )
9 cphclm 20550 . . . 4  |-  ( W  e.  CPreHil  ->  W  e. CMod )
109adantr 462 . . 3  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  W  e. CMod )
111adantr 462 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  W  e.  PreHil )
12 simpr1 987 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  A  e.  V )
13 simpr2 988 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  B  e.  V )
14 eqid 2433 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
152, 3, 4, 14ipcl 17904 . . . 4  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  B  e.  V )  ->  ( A  .,  B )  e.  ( Base `  (Scalar `  W ) ) )
1611, 12, 13, 15syl3anc 1211 . . 3  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  .,  B )  e.  (
Base `  (Scalar `  W
) ) )
17 simpr3 989 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  C  e.  V )
182, 3, 4, 14ipcl 17904 . . . 4  |-  ( ( W  e.  PreHil  /\  A  e.  V  /\  C  e.  V )  ->  ( A  .,  C )  e.  ( Base `  (Scalar `  W ) ) )
1911, 12, 17, 18syl3anc 1211 . . 3  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  .,  C )  e.  (
Base `  (Scalar `  W
) ) )
202, 14clmsub 20494 . . 3  |-  ( ( W  e. CMod  /\  ( A  .,  B )  e.  ( Base `  (Scalar `  W ) )  /\  ( A  .,  C )  e.  ( Base `  (Scalar `  W ) ) )  ->  ( ( A 
.,  B )  -  ( A  .,  C ) )  =  ( ( A  .,  B ) ( -g `  (Scalar `  W ) ) ( A  .,  C ) ) )
2110, 16, 19, 20syl3anc 1211 . 2  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .,  B )  -  ( A  .,  C ) )  =  ( ( A  .,  B ) ( -g `  (Scalar `  W ) ) ( A  .,  C ) ) )
228, 21eqtr4d 2468 1  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( A  .,  ( B  .-  C
) )  =  ( ( A  .,  B
)  -  ( A 
.,  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   ` cfv 5406  (class class class)co 6080    - cmin 9583   Basecbs 14157  Scalarcsca 14224   .icip 14226   -gcsg 15396   PreHilcphl 17895  CModcclm 20476   CPreHilccph 20527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-tpos 6734  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-fz 11425  df-seq 11791  df-exp 11850  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-0g 14363  df-mnd 15398  df-mhm 15447  df-grp 15525  df-minusg 15526  df-sbg 15527  df-subg 15658  df-ghm 15725  df-cmn 16259  df-mgp 16566  df-rng 16580  df-cring 16581  df-ur 16582  df-oppr 16649  df-dvdsr 16667  df-unit 16668  df-rnghom 16740  df-drng 16758  df-subrg 16787  df-staf 16854  df-srng 16855  df-lmod 16874  df-lmhm 17025  df-lvec 17106  df-sra 17175  df-rgmod 17176  df-cnfld 17663  df-phl 17897  df-nlm 20021  df-clm 20477  df-cph 20529
This theorem is referenced by:  ipcnlem2  20598  pjthlem1  20766
  Copyright terms: Public domain W3C validator