![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphqss | Structured version Visualization version Unicode version |
Description: The scalar field of a complex pre-Hilbert space contains all rational numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
cphsca.f |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cphsca.k |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cphqss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphsca.f |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | cphsca.k |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | cphsubrg 22206 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 2 | cphsca 22205 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | cphlvec 22201 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 1 | lvecdrng 18376 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 5, 6 | syl 17 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 4, 7 | eqeltrrd 2540 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | qsssubdrg 19075 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 3, 8, 9 | syl2anc 671 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-8 1899 ax-9 1906 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 ax-ext 2441 ax-rep 4528 ax-sep 4538 ax-nul 4547 ax-pow 4594 ax-pr 4652 ax-un 6609 ax-inf2 8171 ax-cnex 9620 ax-resscn 9621 ax-1cn 9622 ax-icn 9623 ax-addcl 9624 ax-addrcl 9625 ax-mulcl 9626 ax-mulrcl 9627 ax-mulcom 9628 ax-addass 9629 ax-mulass 9630 ax-distr 9631 ax-i2m1 9632 ax-1ne0 9633 ax-1rid 9634 ax-rnegex 9635 ax-rrecex 9636 ax-cnre 9637 ax-pre-lttri 9638 ax-pre-lttrn 9639 ax-pre-ltadd 9640 ax-pre-mulgt0 9641 ax-addf 9643 ax-mulf 9644 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3or 992 df-3an 993 df-tru 1457 df-ex 1674 df-nf 1678 df-sb 1808 df-eu 2313 df-mo 2314 df-clab 2448 df-cleq 2454 df-clel 2457 df-nfc 2591 df-ne 2634 df-nel 2635 df-ral 2753 df-rex 2754 df-reu 2755 df-rmo 2756 df-rab 2757 df-v 3058 df-sbc 3279 df-csb 3375 df-dif 3418 df-un 3420 df-in 3422 df-ss 3429 df-pss 3431 df-nul 3743 df-if 3893 df-pw 3964 df-sn 3980 df-pr 3982 df-tp 3984 df-op 3986 df-uni 4212 df-int 4248 df-iun 4293 df-br 4416 df-opab 4475 df-mpt 4476 df-tr 4511 df-eprel 4763 df-id 4767 df-po 4773 df-so 4774 df-fr 4811 df-we 4813 df-xp 4858 df-rel 4859 df-cnv 4860 df-co 4861 df-dm 4862 df-rn 4863 df-res 4864 df-ima 4865 df-pred 5398 df-ord 5444 df-on 5445 df-lim 5446 df-suc 5447 df-iota 5564 df-fun 5602 df-fn 5603 df-f 5604 df-f1 5605 df-fo 5606 df-f1o 5607 df-fv 5608 df-riota 6276 df-ov 6317 df-oprab 6318 df-mpt2 6319 df-om 6719 df-1st 6819 df-2nd 6820 df-tpos 6998 df-wrecs 7053 df-recs 7115 df-rdg 7153 df-1o 7207 df-oadd 7211 df-er 7388 df-en 7595 df-dom 7596 df-sdom 7597 df-fin 7598 df-pnf 9702 df-mnf 9703 df-xr 9704 df-ltxr 9705 df-le 9706 df-sub 9887 df-neg 9888 df-div 10297 df-nn 10637 df-2 10695 df-3 10696 df-4 10697 df-5 10698 df-6 10699 df-7 10700 df-8 10701 df-9 10702 df-10 10703 df-n0 10898 df-z 10966 df-dec 11080 df-uz 11188 df-q 11293 df-fz 11813 df-seq 12245 df-exp 12304 df-struct 15171 df-ndx 15172 df-slot 15173 df-base 15174 df-sets 15175 df-ress 15176 df-plusg 15251 df-mulr 15252 df-starv 15253 df-tset 15257 df-ple 15258 df-ds 15260 df-unif 15261 df-0g 15388 df-mgm 16536 df-sgrp 16575 df-mnd 16585 df-grp 16721 df-minusg 16722 df-mulg 16724 df-subg 16862 df-cmn 17480 df-mgp 17772 df-ur 17784 df-ring 17830 df-cring 17831 df-oppr 17899 df-dvdsr 17917 df-unit 17918 df-invr 17948 df-dvr 17959 df-drng 18025 df-subrg 18054 df-lvec 18374 df-cnfld 19019 df-phl 19241 df-cph 22194 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |