![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphnvc | Structured version Visualization version Unicode version |
Description: A complex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
cphnvc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphnlm 22198 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | cphlvec 22201 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | isnvc 21745 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | sylanbrc 675 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 ax-ext 2441 ax-nul 4547 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3an 993 df-tru 1457 df-ex 1674 df-nf 1678 df-sb 1808 df-eu 2313 df-clab 2448 df-cleq 2454 df-clel 2457 df-nfc 2591 df-ne 2634 df-ral 2753 df-rex 2754 df-rab 2757 df-v 3058 df-sbc 3279 df-dif 3418 df-un 3420 df-in 3422 df-ss 3429 df-nul 3743 df-if 3893 df-sn 3980 df-pr 3982 df-op 3986 df-uni 4212 df-br 4416 df-opab 4475 df-mpt 4476 df-xp 4858 df-cnv 4860 df-dm 4862 df-rn 4863 df-res 4864 df-ima 4865 df-iota 5564 df-fv 5608 df-ov 6317 df-phl 19241 df-nvc 21650 df-cph 22194 |
This theorem is referenced by: ishl2 22385 |
Copyright terms: Public domain | W3C validator |