![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphngp | Structured version Visualization version Unicode version |
Description: A complex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cphngp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphnlm 22199 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nlmngp 21729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 17 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1680 ax-4 1693 ax-5 1769 ax-6 1816 ax-7 1862 ax-10 1926 ax-11 1931 ax-12 1944 ax-13 2102 ax-ext 2442 ax-nul 4548 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3an 993 df-tru 1458 df-ex 1675 df-nf 1679 df-sb 1809 df-eu 2314 df-clab 2449 df-cleq 2455 df-clel 2458 df-nfc 2592 df-ne 2635 df-ral 2754 df-rex 2755 df-rab 2758 df-v 3059 df-sbc 3280 df-dif 3419 df-un 3421 df-in 3423 df-ss 3430 df-nul 3744 df-if 3894 df-sn 3981 df-pr 3983 df-op 3987 df-uni 4213 df-br 4417 df-opab 4476 df-mpt 4477 df-xp 4859 df-cnv 4861 df-dm 4863 df-rn 4864 df-res 4865 df-ima 4866 df-iota 5565 df-fv 5609 df-ov 6318 df-nlm 21650 df-cph 22195 |
This theorem is referenced by: cphnmf 22222 reipcl 22224 ipge0 22225 ipcn 22266 cnmpt1ip 22267 cnmpt2ip 22268 clsocv 22270 minveclem1 22415 minveclem2 22417 minveclem3b 22419 minveclem3 22420 minveclem4a 22421 minveclem4 22423 minveclem6 22425 minveclem7 22426 minveclem2OLD 22429 minveclem3bOLD 22431 minveclem3OLD 22432 minveclem4aOLD 22433 minveclem4OLD 22435 minveclem6OLD 22437 minveclem7OLD 22438 pjthlem1 22440 rrxngp 38189 |
Copyright terms: Public domain | W3C validator |