MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphipeq0 Structured version   Unicode version

Theorem cphipeq0 21776
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. Complex version of ipeq0 18800. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h  |-  .,  =  ( .i `  W )
cphipcj.v  |-  V  =  ( Base `  W
)
cphip0l.z  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
cphipeq0  |-  ( ( W  e.  CPreHil  /\  A  e.  V )  ->  (
( A  .,  A
)  =  0  <->  A  =  .0.  ) )

Proof of Theorem cphipeq0
StepHypRef Expression
1 cphclm 21762 . . . . 5  |-  ( W  e.  CPreHil  ->  W  e. CMod )
2 eqid 2457 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
32clm0 21698 . . . . 5  |-  ( W  e. CMod  ->  0  =  ( 0g `  (Scalar `  W ) ) )
41, 3syl 16 . . . 4  |-  ( W  e.  CPreHil  ->  0  =  ( 0g `  (Scalar `  W ) ) )
54adantr 465 . . 3  |-  ( ( W  e.  CPreHil  /\  A  e.  V )  ->  0  =  ( 0g `  (Scalar `  W ) ) )
65eqeq2d 2471 . 2  |-  ( ( W  e.  CPreHil  /\  A  e.  V )  ->  (
( A  .,  A
)  =  0  <->  ( A  .,  A )  =  ( 0g `  (Scalar `  W ) ) ) )
7 cphphl 21744 . . 3  |-  ( W  e.  CPreHil  ->  W  e.  PreHil )
8 cphipcj.h . . . 4  |-  .,  =  ( .i `  W )
9 cphipcj.v . . . 4  |-  V  =  ( Base `  W
)
10 eqid 2457 . . . 4  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
11 cphip0l.z . . . 4  |-  .0.  =  ( 0g `  W )
122, 8, 9, 10, 11ipeq0 18800 . . 3  |-  ( ( W  e.  PreHil  /\  A  e.  V )  ->  (
( A  .,  A
)  =  ( 0g
`  (Scalar `  W )
)  <->  A  =  .0.  ) )
137, 12sylan 471 . 2  |-  ( ( W  e.  CPreHil  /\  A  e.  V )  ->  (
( A  .,  A
)  =  ( 0g
`  (Scalar `  W )
)  <->  A  =  .0.  ) )
146, 13bitrd 253 1  |-  ( ( W  e.  CPreHil  /\  A  e.  V )  ->  (
( A  .,  A
)  =  0  <->  A  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   ` cfv 5594  (class class class)co 6296   0cc0 9509   Basecbs 14644  Scalarcsca 14715   .icip 14717   0gc0g 14857   PreHilcphl 18786  CModcclm 21688   CPreHilccph 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-tpos 6973  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-fz 11698  df-seq 12111  df-exp 12170  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-0g 14859  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-grp 16184  df-subg 16325  df-ghm 16392  df-cmn 16927  df-mgp 17269  df-ur 17281  df-ring 17327  df-cring 17328  df-oppr 17399  df-dvdsr 17417  df-unit 17418  df-drng 17525  df-subrg 17554  df-lmod 17641  df-lmhm 17795  df-lvec 17876  df-sra 17945  df-rgmod 17946  df-cnfld 18548  df-phl 18788  df-nlm 21233  df-clm 21689  df-cph 21741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator