MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cph2ass Structured version   Unicode version

Theorem cph2ass 20736
Description: Move scalar multiplication to outside of inner product. See his35 24495. (Contributed by Mario Carneiro, 17-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h  |-  .,  =  ( .i `  W )
cphipcj.v  |-  V  =  ( Base `  W
)
cphass.f  |-  F  =  (Scalar `  W )
cphass.k  |-  K  =  ( Base `  F
)
cphass.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
cph2ass  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  (
( A  .x.  C
)  .,  ( B  .x.  D ) )  =  ( ( A  x.  ( * `  B
) )  x.  ( C  .,  D ) ) )

Proof of Theorem cph2ass
StepHypRef Expression
1 simp1 988 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  W  e.  CPreHil )
2 simp2r 1015 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  B  e.  K )
3 simp3l 1016 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  C  e.  V )
4 simp3r 1017 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  D  e.  V )
5 cphipcj.h . . . . 5  |-  .,  =  ( .i `  W )
6 cphipcj.v . . . . 5  |-  V  =  ( Base `  W
)
7 cphass.f . . . . 5  |-  F  =  (Scalar `  W )
8 cphass.k . . . . 5  |-  K  =  ( Base `  F
)
9 cphass.s . . . . 5  |-  .x.  =  ( .s `  W )
105, 6, 7, 8, 9cphassr 20735 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( B  e.  K  /\  C  e.  V  /\  D  e.  V )
)  ->  ( C  .,  ( B  .x.  D
) )  =  ( ( * `  B
)  x.  ( C 
.,  D ) ) )
111, 2, 3, 4, 10syl13anc 1220 . . 3  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  ( C  .,  ( B  .x.  D ) )  =  ( ( * `  B )  x.  ( C  .,  D ) ) )
1211oveq2d 6112 . 2  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  ( A  x.  ( C  .,  ( B  .x.  D
) ) )  =  ( A  x.  (
( * `  B
)  x.  ( C 
.,  D ) ) ) )
13 simp2l 1014 . . 3  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  A  e.  K )
14 cphlmod 20698 . . . . 5  |-  ( W  e.  CPreHil  ->  W  e.  LMod )
15143ad2ant1 1009 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  W  e.  LMod )
166, 7, 9, 8lmodvscl 16970 . . . 4  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  D  e.  V )  ->  ( B  .x.  D )  e.  V )
1715, 2, 4, 16syl3anc 1218 . . 3  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  ( B  .x.  D )  e.  V )
185, 6, 7, 8, 9cphass 20734 . . 3  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  C  e.  V  /\  ( B  .x.  D )  e.  V ) )  ->  ( ( A 
.x.  C )  .,  ( B  .x.  D ) )  =  ( A  x.  ( C  .,  ( B  .x.  D ) ) ) )
191, 13, 3, 17, 18syl13anc 1220 . 2  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  (
( A  .x.  C
)  .,  ( B  .x.  D ) )  =  ( A  x.  ( C  .,  ( B  .x.  D ) ) ) )
20 cphclm 20713 . . . . . 6  |-  ( W  e.  CPreHil  ->  W  e. CMod )
21203ad2ant1 1009 . . . . 5  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  W  e. CMod )
227, 8clmsscn 20656 . . . . 5  |-  ( W  e. CMod  ->  K  C_  CC )
2321, 22syl 16 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  K  C_  CC )
2423, 13sseldd 3362 . . 3  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  A  e.  CC )
2523, 2sseldd 3362 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  B  e.  CC )
2625cjcld 12690 . . 3  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  (
* `  B )  e.  CC )
276, 5cphipcl 20715 . . . . 5  |-  ( ( W  e.  CPreHil  /\  C  e.  V  /\  D  e.  V )  ->  ( C  .,  D )  e.  CC )
28273expb 1188 . . . 4  |-  ( ( W  e.  CPreHil  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( C  .,  D )  e.  CC )
29283adant2 1007 . . 3  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  ( C  .,  D )  e.  CC )
3024, 26, 29mulassd 9414 . 2  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  (
( A  x.  (
* `  B )
)  x.  ( C 
.,  D ) )  =  ( A  x.  ( ( * `  B )  x.  ( C  .,  D ) ) ) )
3112, 19, 303eqtr4d 2485 1  |-  ( ( W  e.  CPreHil  /\  ( A  e.  K  /\  B  e.  K )  /\  ( C  e.  V  /\  D  e.  V
) )  ->  (
( A  .x.  C
)  .,  ( B  .x.  D ) )  =  ( ( A  x.  ( * `  B
) )  x.  ( C  .,  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    C_ wss 3333   ` cfv 5423  (class class class)co 6096   CCcc 9285    x. cmul 9292   *ccj 12590   Basecbs 14179  Scalarcsca 14246   .scvsca 14247   .icip 14248   LModclmod 16953  CModcclm 20639   CPreHilccph 20690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-addf 9366  ax-mulf 9367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-tpos 6750  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-fz 11443  df-seq 11812  df-exp 11871  df-cj 12593  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-starv 14258  df-sca 14259  df-vsca 14260  df-ip 14261  df-tset 14262  df-ple 14263  df-ds 14265  df-unif 14266  df-0g 14385  df-mnd 15420  df-mhm 15469  df-grp 15550  df-subg 15683  df-ghm 15750  df-cmn 16284  df-mgp 16597  df-ur 16609  df-rng 16652  df-cring 16653  df-oppr 16720  df-dvdsr 16738  df-unit 16739  df-rnghom 16811  df-drng 16839  df-subrg 16868  df-staf 16935  df-srng 16936  df-lmod 16955  df-lmhm 17108  df-lvec 17189  df-sra 17258  df-rgmod 17259  df-cnfld 17824  df-phl 18060  df-nlm 20184  df-clm 20640  df-cph 20692
This theorem is referenced by:  pjthlem1  20929
  Copyright terms: Public domain W3C validator