MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cp Structured version   Unicode version

Theorem cp 8361
Description: Collection Principle. This remarkable theorem scheme is in effect a very strong generalization of the Axiom of Replacement. The proof makes use of Scott's trick scottex 8355 that collapses a proper class into a set of minimum rank. The wff  ph can be thought of as  ph ( x ,  y ). Scheme "Collection Principle" of [Jech] p. 72. (Contributed by NM, 17-Oct-2003.)
Assertion
Ref Expression
cp  |-  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph )
Distinct variable groups:    ph, z, w   
x, y, z, w
Allowed substitution hints:    ph( x, y)

Proof of Theorem cp
StepHypRef Expression
1 vex 3090 . . 3  |-  z  e. 
_V
21cplem2 8360 . 2  |-  E. w A. x  e.  z 
( { y  | 
ph }  =/=  (/)  ->  ( { y  |  ph }  i^i  w )  =/=  (/) )
3 abn0 3787 . . . . 5  |-  ( { y  |  ph }  =/=  (/)  <->  E. y ph )
4 elin 3655 . . . . . . . 8  |-  ( y  e.  ( { y  |  ph }  i^i  w )  <->  ( y  e.  { y  |  ph }  /\  y  e.  w
) )
5 abid 2416 . . . . . . . . 9  |-  ( y  e.  { y  | 
ph }  <->  ph )
65anbi1i 699 . . . . . . . 8  |-  ( ( y  e.  { y  |  ph }  /\  y  e.  w )  <->  (
ph  /\  y  e.  w ) )
7 ancom 451 . . . . . . . 8  |-  ( (
ph  /\  y  e.  w )  <->  ( y  e.  w  /\  ph )
)
84, 6, 73bitri 274 . . . . . . 7  |-  ( y  e.  ( { y  |  ph }  i^i  w )  <->  ( y  e.  w  /\  ph )
)
98exbii 1714 . . . . . 6  |-  ( E. y  y  e.  ( { y  |  ph }  i^i  w )  <->  E. y
( y  e.  w  /\  ph ) )
10 nfab1 2593 . . . . . . . 8  |-  F/_ y { y  |  ph }
11 nfcv 2591 . . . . . . . 8  |-  F/_ y
w
1210, 11nfin 3675 . . . . . . 7  |-  F/_ y
( { y  | 
ph }  i^i  w
)
1312n0f 3776 . . . . . 6  |-  ( ( { y  |  ph }  i^i  w )  =/=  (/) 
<->  E. y  y  e.  ( { y  | 
ph }  i^i  w
) )
14 df-rex 2788 . . . . . 6  |-  ( E. y  e.  w  ph  <->  E. y ( y  e.  w  /\  ph )
)
159, 13, 143bitr4i 280 . . . . 5  |-  ( ( { y  |  ph }  i^i  w )  =/=  (/) 
<->  E. y  e.  w  ph )
163, 15imbi12i 327 . . . 4  |-  ( ( { y  |  ph }  =/=  (/)  ->  ( {
y  |  ph }  i^i  w )  =/=  (/) )  <->  ( E. y ph  ->  E. y  e.  w  ph ) )
1716ralbii 2863 . . 3  |-  ( A. x  e.  z  ( { y  |  ph }  =/=  (/)  ->  ( {
y  |  ph }  i^i  w )  =/=  (/) )  <->  A. x  e.  z  ( E. y ph  ->  E. y  e.  w  ph ) )
1817exbii 1714 . 2  |-  ( E. w A. x  e.  z  ( { y  |  ph }  =/=  (/) 
->  ( { y  | 
ph }  i^i  w
)  =/=  (/) )  <->  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph ) )
192, 18mpbi 211 1  |-  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370   E.wex 1659    e. wcel 1870   {cab 2414    =/= wne 2625   A.wral 2782   E.wrex 2783    i^i cin 3441   (/)c0 3767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-reg 8107  ax-inf2 8146
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-r1 8234  df-rank 8235
This theorem is referenced by:  bnd  8362
  Copyright terms: Public domain W3C validator