Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cover2g Structured version   Unicode version

Theorem cover2g 31487
Description: Two ways of expressing the statement "there is a cover of  A by elements of  B such that for each set in the cover,  ph." Note that  ph and  x must be distinct. (Contributed by Jeff Madsen, 21-Jun-2010.)
Hypothesis
Ref Expression
cover2g.1  |-  A  = 
U. B
Assertion
Ref Expression
cover2g  |-  ( B  e.  C  ->  ( A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  ph )  <->  E. z  e.  ~P  B ( U. z  =  A  /\  A. y  e.  z  ph ) ) )
Distinct variable groups:    ph, x, z   
x, B, y, z   
x, A, z
Allowed substitution hints:    ph( y)    A( y)    C( x, y, z)

Proof of Theorem cover2g
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 unieq 4199 . . . 4  |-  ( b  =  B  ->  U. b  =  U. B )
2 cover2g.1 . . . 4  |-  A  = 
U. B
31, 2syl6eqr 2461 . . 3  |-  ( b  =  B  ->  U. b  =  A )
4 rexeq 3005 . . 3  |-  ( b  =  B  ->  ( E. y  e.  b 
( x  e.  y  /\  ph )  <->  E. y  e.  B  ( x  e.  y  /\  ph )
) )
53, 4raleqbidv 3018 . 2  |-  ( b  =  B  ->  ( A. x  e.  U. b E. y  e.  b 
( x  e.  y  /\  ph )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  ph )
) )
6 pweq 3958 . . 3  |-  ( b  =  B  ->  ~P b  =  ~P B
)
73eqeq2d 2416 . . . 4  |-  ( b  =  B  ->  ( U. z  =  U. b 
<-> 
U. z  =  A ) )
87anbi1d 703 . . 3  |-  ( b  =  B  ->  (
( U. z  = 
U. b  /\  A. y  e.  z  ph ) 
<->  ( U. z  =  A  /\  A. y  e.  z  ph ) ) )
96, 8rexeqbidv 3019 . 2  |-  ( b  =  B  ->  ( E. z  e.  ~P  b ( U. z  =  U. b  /\  A. y  e.  z  ph ) 
<->  E. z  e.  ~P  B ( U. z  =  A  /\  A. y  e.  z  ph ) ) )
10 vex 3062 . . 3  |-  b  e. 
_V
11 eqid 2402 . . 3  |-  U. b  =  U. b
1210, 11cover2 31486 . 2  |-  ( A. x  e.  U. b E. y  e.  b 
( x  e.  y  /\  ph )  <->  E. z  e.  ~P  b ( U. z  =  U. b  /\  A. y  e.  z 
ph ) )
135, 9, 12vtoclbg 3118 1  |-  ( B  e.  C  ->  ( A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  ph )  <->  E. z  e.  ~P  B ( U. z  =  A  /\  A. y  e.  z  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   E.wrex 2755   ~Pcpw 3955   U.cuni 4191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-in 3421  df-ss 3428  df-pw 3957  df-uni 4192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator