MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coundi Structured version   Unicode version

Theorem coundi 5514
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
coundi  |-  ( A  o.  ( B  u.  C ) )  =  ( ( A  o.  B )  u.  ( A  o.  C )
)

Proof of Theorem coundi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopab 4528 . . 3  |-  ( {
<. x ,  y >.  |  E. z ( x B z  /\  z A y ) }  u.  { <. x ,  y >.  |  E. z ( x C z  /\  z A y ) } )  =  { <. x ,  y >.  |  ( E. z ( x B z  /\  z A y )  \/ 
E. z ( x C z  /\  z A y ) ) }
2 brun 4501 . . . . . . . 8  |-  ( x ( B  u.  C
) z  <->  ( x B z  \/  x C z ) )
32anbi1i 695 . . . . . . 7  |-  ( ( x ( B  u.  C ) z  /\  z A y )  <->  ( (
x B z  \/  x C z )  /\  z A y ) )
4 andir 866 . . . . . . 7  |-  ( ( ( x B z  \/  x C z )  /\  z A y )  <->  ( (
x B z  /\  z A y )  \/  ( x C z  /\  z A y ) ) )
53, 4bitri 249 . . . . . 6  |-  ( ( x ( B  u.  C ) z  /\  z A y )  <->  ( (
x B z  /\  z A y )  \/  ( x C z  /\  z A y ) ) )
65exbii 1644 . . . . 5  |-  ( E. z ( x ( B  u.  C ) z  /\  z A y )  <->  E. z
( ( x B z  /\  z A y )  \/  (
x C z  /\  z A y ) ) )
7 19.43 1670 . . . . 5  |-  ( E. z ( ( x B z  /\  z A y )  \/  ( x C z  /\  z A y ) )  <->  ( E. z ( x B z  /\  z A y )  \/  E. z ( x C z  /\  z A y ) ) )
86, 7bitr2i 250 . . . 4  |-  ( ( E. z ( x B z  /\  z A y )  \/ 
E. z ( x C z  /\  z A y ) )  <->  E. z ( x ( B  u.  C ) z  /\  z A y ) )
98opabbii 4517 . . 3  |-  { <. x ,  y >.  |  ( E. z ( x B z  /\  z A y )  \/ 
E. z ( x C z  /\  z A y ) ) }  =  { <. x ,  y >.  |  E. z ( x ( B  u.  C ) z  /\  z A y ) }
101, 9eqtri 2496 . 2  |-  ( {
<. x ,  y >.  |  E. z ( x B z  /\  z A y ) }  u.  { <. x ,  y >.  |  E. z ( x C z  /\  z A y ) } )  =  { <. x ,  y >.  |  E. z ( x ( B  u.  C ) z  /\  z A y ) }
11 df-co 5014 . . 3  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
12 df-co 5014 . . 3  |-  ( A  o.  C )  =  { <. x ,  y
>.  |  E. z
( x C z  /\  z A y ) }
1311, 12uneq12i 3661 . 2  |-  ( ( A  o.  B )  u.  ( A  o.  C ) )  =  ( { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }  u.  {
<. x ,  y >.  |  E. z ( x C z  /\  z A y ) } )
14 df-co 5014 . 2  |-  ( A  o.  ( B  u.  C ) )  =  { <. x ,  y
>.  |  E. z
( x ( B  u.  C ) z  /\  z A y ) }
1510, 13, 143eqtr4ri 2507 1  |-  ( A  o.  ( B  u.  C ) )  =  ( ( A  o.  B )  u.  ( A  o.  C )
)
Colors of variables: wff setvar class
Syntax hints:    \/ wo 368    /\ wa 369    = wceq 1379   E.wex 1596    u. cun 3479   class class class wbr 4453   {copab 4510    o. ccom 5009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-v 3120  df-un 3486  df-br 4454  df-opab 4512  df-co 5014
This theorem is referenced by:  relcoi1  5542  mvdco  16343  ustssco  20585  cvmliftlem10  28564  diophren  30675
  Copyright terms: Public domain W3C validator