MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr Structured version   Unicode version

Theorem cotr 5377
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. Special instance of cotrg 5376. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
cotr  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
Distinct variable group:    x, y, z, R

Proof of Theorem cotr
StepHypRef Expression
1 cotrg 5376 1  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377    C_ wss 3476   class class class wbr 4447    o. ccom 5003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-xp 5005  df-rel 5006  df-co 5008
This theorem is referenced by:  xpidtr  5387  trin2  5388  dfer2  7309  pslem  15686  letsr  15707  dirtr  15716  filnetlem3  29799
  Copyright terms: Public domain W3C validator