MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr Structured version   Unicode version

Theorem cotr 5199
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. Special instance of cotrg 5198. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
cotr  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
Distinct variable group:    x, y, z, R

Proof of Theorem cotr
StepHypRef Expression
1 cotrg 5198 1  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1403    C_ wss 3413   class class class wbr 4394    o. ccom 4826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-br 4395  df-opab 4453  df-xp 4828  df-rel 4829  df-co 4831
This theorem is referenced by:  xpidtr  5209  trin2  5210  dfer2  7348  trclfvcotr  12990  pslem  16158  letsr  16179  dirtr  16188  filnetlem3  30595  iunrelexpuztr  35678
  Copyright terms: Public domain W3C validator