MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosq14gt0 Structured version   Visualization version   Unicode version

Theorem cosq14gt0 23465
Description: The cosine of a number strictly between  -u pi  /  2 and  pi  /  2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
cosq14gt0  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  A ) )

Proof of Theorem cosq14gt0
StepHypRef Expression
1 halfpire 23419 . . . . 5  |-  ( pi 
/  2 )  e.  RR
2 elioore 11666 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  e.  RR )
3 resubcl 9938 . . . . 5  |-  ( ( ( pi  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( ( pi  / 
2 )  -  A
)  e.  RR )
41, 2, 3sylancr 669 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  A
)  e.  RR )
5 neghalfpirx 23421 . . . . . . 7  |-  -u (
pi  /  2 )  e.  RR*
61rexri 9693 . . . . . . 7  |-  ( pi 
/  2 )  e. 
RR*
7 elioo2 11677 . . . . . . 7  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( pi  /  2
)  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( pi  /  2
) ) ) )
85, 6, 7mp2an 678 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( pi  /  2
) ) )
98simp3bi 1025 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  <  ( pi  / 
2 ) )
10 posdif 10107 . . . . . 6  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  < 
( pi  /  2
)  <->  0  <  (
( pi  /  2
)  -  A ) ) )
112, 1, 10sylancl 668 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( A  <  (
pi  /  2 )  <->  0  <  ( ( pi  /  2 )  -  A ) ) )
129, 11mpbid 214 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( (
pi  /  2 )  -  A ) )
13 picn 23414 . . . . . . . 8  |-  pi  e.  CC
14 halfcl 10838 . . . . . . . 8  |-  ( pi  e.  CC  ->  (
pi  /  2 )  e.  CC )
1513, 14ax-mp 5 . . . . . . 7  |-  ( pi 
/  2 )  e.  CC
1615negcli 9942 . . . . . . 7  |-  -u (
pi  /  2 )  e.  CC
1713, 15negsubi 9952 . . . . . . . 8  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  -  (
pi  /  2 ) )
18 pidiv2halves 23422 . . . . . . . . 9  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
1913, 15, 15, 18subaddrii 9964 . . . . . . . 8  |-  ( pi 
-  ( pi  / 
2 ) )  =  ( pi  /  2
)
2017, 19eqtri 2473 . . . . . . 7  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  /  2
)
2115, 13, 16, 20subaddrii 9964 . . . . . 6  |-  ( ( pi  /  2 )  -  pi )  = 
-u ( pi  / 
2 )
228simp2bi 1024 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  -u ( pi  /  2
)  <  A )
2321, 22syl5eqbr 4436 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  pi )  <  A )
24 pire 23413 . . . . . . 7  |-  pi  e.  RR
25 ltsub23 10094 . . . . . . 7  |-  ( ( ( pi  /  2
)  e.  RR  /\  A  e.  RR  /\  pi  e.  RR )  ->  (
( ( pi  / 
2 )  -  A
)  <  pi  <->  ( (
pi  /  2 )  -  pi )  < 
A ) )
261, 24, 25mp3an13 1355 . . . . . 6  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  -  A
)  <  pi  <->  ( (
pi  /  2 )  -  pi )  < 
A ) )
272, 26syl 17 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( ( pi 
/  2 )  -  A )  <  pi  <->  ( ( pi  /  2
)  -  pi )  <  A ) )
2823, 27mpbird 236 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  A
)  <  pi )
29 0xr 9687 . . . . 5  |-  0  e.  RR*
3024rexri 9693 . . . . 5  |-  pi  e.  RR*
31 elioo2 11677 . . . . 5  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( pi  / 
2 )  -  A
)  e.  ( 0 (,) pi )  <->  ( (
( pi  /  2
)  -  A )  e.  RR  /\  0  <  ( ( pi  / 
2 )  -  A
)  /\  ( (
pi  /  2 )  -  A )  < 
pi ) ) )
3229, 30, 31mp2an 678 . . . 4  |-  ( ( ( pi  /  2
)  -  A )  e.  ( 0 (,) pi )  <->  ( (
( pi  /  2
)  -  A )  e.  RR  /\  0  <  ( ( pi  / 
2 )  -  A
)  /\  ( (
pi  /  2 )  -  A )  < 
pi ) )
334, 12, 28, 32syl3anbrc 1192 . . 3  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  A
)  e.  ( 0 (,) pi ) )
34 sinq12gt0 23462 . . 3  |-  ( ( ( pi  /  2
)  -  A )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( pi  /  2
)  -  A ) ) )
3533, 34syl 17 . 2  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( sin `  ( ( pi  / 
2 )  -  A
) ) )
362recnd 9669 . . 3  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  e.  CC )
37 sinhalfpim 23448 . . 3  |-  ( A  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  -  A ) )  =  ( cos `  A
) )
3836, 37syl 17 . 2  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( sin `  (
( pi  /  2
)  -  A ) )  =  ( cos `  A ) )
3935, 38breqtrd 4427 1  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ w3a 985    = wceq 1444    e. wcel 1887   class class class wbr 4402   ` cfv 5582  (class class class)co 6290   CCcc 9537   RRcr 9538   0cc0 9539    + caddc 9542   RR*cxr 9674    < clt 9675    - cmin 9860   -ucneg 9861    / cdiv 10269   2c2 10659   (,)cioo 11635   sincsin 14116   cosccos 14117   picpi 14119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-seq 12214  df-exp 12273  df-fac 12460  df-bc 12488  df-hash 12516  df-shft 13130  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13526  df-clim 13552  df-rlim 13553  df-sum 13753  df-ef 14121  df-sin 14123  df-cos 14124  df-pi 14126  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lp 20152  df-perf 20153  df-cn 20243  df-cnp 20244  df-haus 20331  df-tx 20577  df-hmeo 20770  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-xms 21335  df-ms 21336  df-tms 21337  df-cncf 21910  df-limc 22821  df-dv 22822
This theorem is referenced by:  tanord1  23486  logcnlem4  23590  asinsinlem  23817
  Copyright terms: Public domain W3C validator