MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosordlem Structured version   Unicode version

Theorem cosordlem 22784
Description: Lemma for cosord 22785. (Contributed by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
cosord.1  |-  ( ph  ->  A  e.  ( 0 [,] pi ) )
cosord.2  |-  ( ph  ->  B  e.  ( 0 [,] pi ) )
cosord.3  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
cosordlem  |-  ( ph  ->  ( cos `  B
)  <  ( cos `  A ) )

Proof of Theorem cosordlem
StepHypRef Expression
1 cosord.2 . . . . . . 7  |-  ( ph  ->  B  e.  ( 0 [,] pi ) )
2 0re 9608 . . . . . . . 8  |-  0  e.  RR
3 pire 22718 . . . . . . . 8  |-  pi  e.  RR
42, 3elicc2i 11602 . . . . . . 7  |-  ( B  e.  ( 0 [,] pi )  <->  ( B  e.  RR  /\  0  <_  B  /\  B  <_  pi ) )
51, 4sylib 196 . . . . . 6  |-  ( ph  ->  ( B  e.  RR  /\  0  <_  B  /\  B  <_  pi ) )
65simp1d 1008 . . . . 5  |-  ( ph  ->  B  e.  RR )
76recnd 9634 . . . 4  |-  ( ph  ->  B  e.  CC )
8 cosord.1 . . . . . . 7  |-  ( ph  ->  A  e.  ( 0 [,] pi ) )
92, 3elicc2i 11602 . . . . . . 7  |-  ( A  e.  ( 0 [,] pi )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
108, 9sylib 196 . . . . . 6  |-  ( ph  ->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
1110simp1d 1008 . . . . 5  |-  ( ph  ->  A  e.  RR )
1211recnd 9634 . . . 4  |-  ( ph  ->  A  e.  CC )
13 subcos 13788 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( ( cos `  A
)  -  ( cos `  B ) )  =  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
147, 12, 13syl2anc 661 . . 3  |-  ( ph  ->  ( ( cos `  A
)  -  ( cos `  B ) )  =  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
15 2re 10617 . . . . 5  |-  2  e.  RR
16 2pos 10639 . . . . 5  |-  0  <  2
1715, 16elrpii 11235 . . . 4  |-  2  e.  RR+
186, 11readdcld 9635 . . . . . . . 8  |-  ( ph  ->  ( B  +  A
)  e.  RR )
1918rehalfcld 10797 . . . . . . 7  |-  ( ph  ->  ( ( B  +  A )  /  2
)  e.  RR )
2019resincld 13756 . . . . . 6  |-  ( ph  ->  ( sin `  (
( B  +  A
)  /  2 ) )  e.  RR )
212a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  RR )
2210simp2d 1009 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
23 cosord.3 . . . . . . . . . . 11  |-  ( ph  ->  A  <  B )
2421, 11, 6, 22, 23lelttrd 9751 . . . . . . . . . 10  |-  ( ph  ->  0  <  B )
25 addgtge0 10052 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  ( 0  < 
B  /\  0  <_  A ) )  ->  0  <  ( B  +  A
) )
266, 11, 24, 22, 25syl22anc 1229 . . . . . . . . 9  |-  ( ph  ->  0  <  ( B  +  A ) )
27 divgt0 10422 . . . . . . . . . 10  |-  ( ( ( ( B  +  A )  e.  RR  /\  0  <  ( B  +  A ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( ( B  +  A )  /  2 ) )
2815, 16, 27mpanr12 685 . . . . . . . . 9  |-  ( ( ( B  +  A
)  e.  RR  /\  0  <  ( B  +  A ) )  -> 
0  <  ( ( B  +  A )  /  2 ) )
2918, 26, 28syl2anc 661 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( B  +  A )  /  2 ) )
303a1i 11 . . . . . . . . 9  |-  ( ph  ->  pi  e.  RR )
3111, 6, 6, 23ltadd2dd 9752 . . . . . . . . . . 11  |-  ( ph  ->  ( B  +  A
)  <  ( B  +  B ) )
3272timesd 10793 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  B
)  =  ( B  +  B ) )
3331, 32breqtrrd 4479 . . . . . . . . . 10  |-  ( ph  ->  ( B  +  A
)  <  ( 2  x.  B ) )
3415a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  RR )
3516a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  0  <  2 )
36 ltdivmul 10429 . . . . . . . . . . 11  |-  ( ( ( B  +  A
)  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( B  +  A )  /  2 )  < 
B  <->  ( B  +  A )  <  (
2  x.  B ) ) )
3718, 6, 34, 35, 36syl112anc 1232 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( B  +  A )  / 
2 )  <  B  <->  ( B  +  A )  <  ( 2  x.  B ) ) )
3833, 37mpbird 232 . . . . . . . . 9  |-  ( ph  ->  ( ( B  +  A )  /  2
)  <  B )
395simp3d 1010 . . . . . . . . 9  |-  ( ph  ->  B  <_  pi )
4019, 6, 30, 38, 39ltletrd 9753 . . . . . . . 8  |-  ( ph  ->  ( ( B  +  A )  /  2
)  <  pi )
41 0xr 9652 . . . . . . . . 9  |-  0  e.  RR*
423rexri 9658 . . . . . . . . 9  |-  pi  e.  RR*
43 elioo2 11582 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( B  +  A )  /  2
)  e.  ( 0 (,) pi )  <->  ( (
( B  +  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  +  A )  /  2
)  /\  ( ( B  +  A )  /  2 )  < 
pi ) ) )
4441, 42, 43mp2an 672 . . . . . . . 8  |-  ( ( ( B  +  A
)  /  2 )  e.  ( 0 (,) pi )  <->  ( (
( B  +  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  +  A )  /  2
)  /\  ( ( B  +  A )  /  2 )  < 
pi ) )
4519, 29, 40, 44syl3anbrc 1180 . . . . . . 7  |-  ( ph  ->  ( ( B  +  A )  /  2
)  e.  ( 0 (,) pi ) )
46 sinq12gt0 22766 . . . . . . 7  |-  ( ( ( B  +  A
)  /  2 )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( B  +  A
)  /  2 ) ) )
4745, 46syl 16 . . . . . 6  |-  ( ph  ->  0  <  ( sin `  ( ( B  +  A )  /  2
) ) )
4820, 47elrpd 11266 . . . . 5  |-  ( ph  ->  ( sin `  (
( B  +  A
)  /  2 ) )  e.  RR+ )
496, 11resubcld 9999 . . . . . . . 8  |-  ( ph  ->  ( B  -  A
)  e.  RR )
5049rehalfcld 10797 . . . . . . 7  |-  ( ph  ->  ( ( B  -  A )  /  2
)  e.  RR )
5150resincld 13756 . . . . . 6  |-  ( ph  ->  ( sin `  (
( B  -  A
)  /  2 ) )  e.  RR )
5211, 6posdifd 10151 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
5323, 52mpbid 210 . . . . . . . . 9  |-  ( ph  ->  0  <  ( B  -  A ) )
54 divgt0 10422 . . . . . . . . . 10  |-  ( ( ( ( B  -  A )  e.  RR  /\  0  <  ( B  -  A ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( ( B  -  A )  /  2 ) )
5515, 16, 54mpanr12 685 . . . . . . . . 9  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  -> 
0  <  ( ( B  -  A )  /  2 ) )
5649, 53, 55syl2anc 661 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( B  -  A )  /  2 ) )
57 rehalfcl 10777 . . . . . . . . . 10  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
583, 57mp1i 12 . . . . . . . . 9  |-  ( ph  ->  ( pi  /  2
)  e.  RR )
596, 11subge02d 10156 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  <_  A  <->  ( B  -  A )  <_  B ) )
6022, 59mpbid 210 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  A
)  <_  B )
6149, 6, 30, 60, 39letrd 9750 . . . . . . . . . 10  |-  ( ph  ->  ( B  -  A
)  <_  pi )
62 lediv1 10419 . . . . . . . . . . 11  |-  ( ( ( B  -  A
)  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( B  -  A )  <_  pi 
<->  ( ( B  -  A )  /  2
)  <_  ( pi  /  2 ) ) )
6349, 30, 34, 35, 62syl112anc 1232 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  -  A )  <_  pi  <->  ( ( B  -  A
)  /  2 )  <_  ( pi  / 
2 ) ) )
6461, 63mpbid 210 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  A )  /  2
)  <_  ( pi  /  2 ) )
65 pipos 22720 . . . . . . . . . . 11  |-  0  <  pi
663, 65elrpii 11235 . . . . . . . . . 10  |-  pi  e.  RR+
67 rphalflt 11258 . . . . . . . . . 10  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  < 
pi )
6866, 67mp1i 12 . . . . . . . . 9  |-  ( ph  ->  ( pi  /  2
)  <  pi )
6950, 58, 30, 64, 68lelttrd 9751 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  A )  /  2
)  <  pi )
70 elioo2 11582 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( B  -  A )  /  2
)  e.  ( 0 (,) pi )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  < 
pi ) ) )
7141, 42, 70mp2an 672 . . . . . . . 8  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,) pi )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  < 
pi ) )
7250, 56, 69, 71syl3anbrc 1180 . . . . . . 7  |-  ( ph  ->  ( ( B  -  A )  /  2
)  e.  ( 0 (,) pi ) )
73 sinq12gt0 22766 . . . . . . 7  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( B  -  A
)  /  2 ) ) )
7472, 73syl 16 . . . . . 6  |-  ( ph  ->  0  <  ( sin `  ( ( B  -  A )  /  2
) ) )
7551, 74elrpd 11266 . . . . 5  |-  ( ph  ->  ( sin `  (
( B  -  A
)  /  2 ) )  e.  RR+ )
7648, 75rpmulcld 11284 . . . 4  |-  ( ph  ->  ( ( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR+ )
77 rpmulcl 11253 . . . 4  |-  ( ( 2  e.  RR+  /\  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR+ )  ->  ( 2  x.  ( ( sin `  ( ( B  +  A )  /  2
) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  e.  RR+ )
7817, 76, 77sylancr 663 . . 3  |-  ( ph  ->  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) )  e.  RR+ )
7914, 78eqeltrd 2555 . 2  |-  ( ph  ->  ( ( cos `  A
)  -  ( cos `  B ) )  e.  RR+ )
806recoscld 13757 . . 3  |-  ( ph  ->  ( cos `  B
)  e.  RR )
8111recoscld 13757 . . 3  |-  ( ph  ->  ( cos `  A
)  e.  RR )
82 difrp 11265 . . 3  |-  ( ( ( cos `  B
)  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( ( cos `  B
)  <  ( cos `  A )  <->  ( ( cos `  A )  -  ( cos `  B ) )  e.  RR+ )
)
8380, 81, 82syl2anc 661 . 2  |-  ( ph  ->  ( ( cos `  B
)  <  ( cos `  A )  <->  ( ( cos `  A )  -  ( cos `  B ) )  e.  RR+ )
)
8479, 83mpbird 232 1  |-  ( ph  ->  ( cos `  B
)  <  ( cos `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   CCcc 9502   RRcr 9503   0cc0 9504    + caddc 9507    x. cmul 9509   RR*cxr 9639    < clt 9640    <_ cle 9641    - cmin 9817    / cdiv 10218   2c2 10597   RR+crp 11232   (,)cioo 11541   [,]cicc 11544   sincsin 13678   cosccos 13679   picpi 13681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-ioc 11546  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-fl 11909  df-seq 12088  df-exp 12147  df-fac 12334  df-bc 12361  df-hash 12386  df-shft 12880  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-limsup 13274  df-clim 13291  df-rlim 13292  df-sum 13489  df-ef 13682  df-sin 13684  df-cos 13685  df-pi 13687  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-sca 14588  df-vsca 14589  df-ip 14590  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-hom 14596  df-cco 14597  df-rest 14695  df-topn 14696  df-0g 14714  df-gsum 14715  df-topgen 14716  df-pt 14717  df-prds 14720  df-xrs 14774  df-qtop 14779  df-imas 14780  df-xps 14782  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-mulg 15932  df-cntz 16227  df-cmn 16673  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-fbas 18286  df-fg 18287  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-cld 19388  df-ntr 19389  df-cls 19390  df-nei 19467  df-lp 19505  df-perf 19506  df-cn 19596  df-cnp 19597  df-haus 19684  df-tx 19931  df-hmeo 20124  df-fil 20215  df-fm 20307  df-flim 20308  df-flf 20309  df-xms 20691  df-ms 20692  df-tms 20693  df-cncf 21250  df-limc 22138  df-dv 22139
This theorem is referenced by:  cosord  22785
  Copyright terms: Public domain W3C validator