MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosordlem Structured version   Unicode version

Theorem cosordlem 21962
Description: Lemma for cosord 21963. (Contributed by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
cosord.1  |-  ( ph  ->  A  e.  ( 0 [,] pi ) )
cosord.2  |-  ( ph  ->  B  e.  ( 0 [,] pi ) )
cosord.3  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
cosordlem  |-  ( ph  ->  ( cos `  B
)  <  ( cos `  A ) )

Proof of Theorem cosordlem
StepHypRef Expression
1 cosord.2 . . . . . . 7  |-  ( ph  ->  B  e.  ( 0 [,] pi ) )
2 0re 9378 . . . . . . . 8  |-  0  e.  RR
3 pire 21896 . . . . . . . 8  |-  pi  e.  RR
42, 3elicc2i 11353 . . . . . . 7  |-  ( B  e.  ( 0 [,] pi )  <->  ( B  e.  RR  /\  0  <_  B  /\  B  <_  pi ) )
51, 4sylib 196 . . . . . 6  |-  ( ph  ->  ( B  e.  RR  /\  0  <_  B  /\  B  <_  pi ) )
65simp1d 1000 . . . . 5  |-  ( ph  ->  B  e.  RR )
76recnd 9404 . . . 4  |-  ( ph  ->  B  e.  CC )
8 cosord.1 . . . . . . 7  |-  ( ph  ->  A  e.  ( 0 [,] pi ) )
92, 3elicc2i 11353 . . . . . . 7  |-  ( A  e.  ( 0 [,] pi )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
108, 9sylib 196 . . . . . 6  |-  ( ph  ->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
1110simp1d 1000 . . . . 5  |-  ( ph  ->  A  e.  RR )
1211recnd 9404 . . . 4  |-  ( ph  ->  A  e.  CC )
13 subcos 13451 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( ( cos `  A
)  -  ( cos `  B ) )  =  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
147, 12, 13syl2anc 661 . . 3  |-  ( ph  ->  ( ( cos `  A
)  -  ( cos `  B ) )  =  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
15 2re 10383 . . . . 5  |-  2  e.  RR
16 2pos 10405 . . . . 5  |-  0  <  2
1715, 16elrpii 10986 . . . 4  |-  2  e.  RR+
186, 11readdcld 9405 . . . . . . . 8  |-  ( ph  ->  ( B  +  A
)  e.  RR )
1918rehalfcld 10563 . . . . . . 7  |-  ( ph  ->  ( ( B  +  A )  /  2
)  e.  RR )
2019resincld 13419 . . . . . 6  |-  ( ph  ->  ( sin `  (
( B  +  A
)  /  2 ) )  e.  RR )
212a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  RR )
2210simp2d 1001 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
23 cosord.3 . . . . . . . . . . 11  |-  ( ph  ->  A  <  B )
2421, 11, 6, 22, 23lelttrd 9521 . . . . . . . . . 10  |-  ( ph  ->  0  <  B )
25 addgtge0 9819 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  ( 0  < 
B  /\  0  <_  A ) )  ->  0  <  ( B  +  A
) )
266, 11, 24, 22, 25syl22anc 1219 . . . . . . . . 9  |-  ( ph  ->  0  <  ( B  +  A ) )
27 divgt0 10189 . . . . . . . . . 10  |-  ( ( ( ( B  +  A )  e.  RR  /\  0  <  ( B  +  A ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( ( B  +  A )  /  2 ) )
2815, 16, 27mpanr12 685 . . . . . . . . 9  |-  ( ( ( B  +  A
)  e.  RR  /\  0  <  ( B  +  A ) )  -> 
0  <  ( ( B  +  A )  /  2 ) )
2918, 26, 28syl2anc 661 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( B  +  A )  /  2 ) )
303a1i 11 . . . . . . . . 9  |-  ( ph  ->  pi  e.  RR )
3111, 6, 6, 23ltadd2dd 9522 . . . . . . . . . . 11  |-  ( ph  ->  ( B  +  A
)  <  ( B  +  B ) )
3272timesd 10559 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  B
)  =  ( B  +  B ) )
3331, 32breqtrrd 4313 . . . . . . . . . 10  |-  ( ph  ->  ( B  +  A
)  <  ( 2  x.  B ) )
3415a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  RR )
3516a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  0  <  2 )
36 ltdivmul 10196 . . . . . . . . . . 11  |-  ( ( ( B  +  A
)  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( B  +  A )  /  2 )  < 
B  <->  ( B  +  A )  <  (
2  x.  B ) ) )
3718, 6, 34, 35, 36syl112anc 1222 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( B  +  A )  / 
2 )  <  B  <->  ( B  +  A )  <  ( 2  x.  B ) ) )
3833, 37mpbird 232 . . . . . . . . 9  |-  ( ph  ->  ( ( B  +  A )  /  2
)  <  B )
395simp3d 1002 . . . . . . . . 9  |-  ( ph  ->  B  <_  pi )
4019, 6, 30, 38, 39ltletrd 9523 . . . . . . . 8  |-  ( ph  ->  ( ( B  +  A )  /  2
)  <  pi )
41 0xr 9422 . . . . . . . . 9  |-  0  e.  RR*
423rexri 9428 . . . . . . . . 9  |-  pi  e.  RR*
43 elioo2 11333 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( B  +  A )  /  2
)  e.  ( 0 (,) pi )  <->  ( (
( B  +  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  +  A )  /  2
)  /\  ( ( B  +  A )  /  2 )  < 
pi ) ) )
4441, 42, 43mp2an 672 . . . . . . . 8  |-  ( ( ( B  +  A
)  /  2 )  e.  ( 0 (,) pi )  <->  ( (
( B  +  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  +  A )  /  2
)  /\  ( ( B  +  A )  /  2 )  < 
pi ) )
4519, 29, 40, 44syl3anbrc 1172 . . . . . . 7  |-  ( ph  ->  ( ( B  +  A )  /  2
)  e.  ( 0 (,) pi ) )
46 sinq12gt0 21944 . . . . . . 7  |-  ( ( ( B  +  A
)  /  2 )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( B  +  A
)  /  2 ) ) )
4745, 46syl 16 . . . . . 6  |-  ( ph  ->  0  <  ( sin `  ( ( B  +  A )  /  2
) ) )
4820, 47elrpd 11017 . . . . 5  |-  ( ph  ->  ( sin `  (
( B  +  A
)  /  2 ) )  e.  RR+ )
496, 11resubcld 9768 . . . . . . . 8  |-  ( ph  ->  ( B  -  A
)  e.  RR )
5049rehalfcld 10563 . . . . . . 7  |-  ( ph  ->  ( ( B  -  A )  /  2
)  e.  RR )
5150resincld 13419 . . . . . 6  |-  ( ph  ->  ( sin `  (
( B  -  A
)  /  2 ) )  e.  RR )
5211, 6posdifd 9918 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
5323, 52mpbid 210 . . . . . . . . 9  |-  ( ph  ->  0  <  ( B  -  A ) )
54 divgt0 10189 . . . . . . . . . 10  |-  ( ( ( ( B  -  A )  e.  RR  /\  0  <  ( B  -  A ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( ( B  -  A )  /  2 ) )
5515, 16, 54mpanr12 685 . . . . . . . . 9  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  -> 
0  <  ( ( B  -  A )  /  2 ) )
5649, 53, 55syl2anc 661 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( B  -  A )  /  2 ) )
57 rehalfcl 10543 . . . . . . . . . 10  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
583, 57mp1i 12 . . . . . . . . 9  |-  ( ph  ->  ( pi  /  2
)  e.  RR )
596, 11subge02d 9923 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  <_  A  <->  ( B  -  A )  <_  B ) )
6022, 59mpbid 210 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  A
)  <_  B )
6149, 6, 30, 60, 39letrd 9520 . . . . . . . . . 10  |-  ( ph  ->  ( B  -  A
)  <_  pi )
62 lediv1 10186 . . . . . . . . . . 11  |-  ( ( ( B  -  A
)  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( B  -  A )  <_  pi 
<->  ( ( B  -  A )  /  2
)  <_  ( pi  /  2 ) ) )
6349, 30, 34, 35, 62syl112anc 1222 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  -  A )  <_  pi  <->  ( ( B  -  A
)  /  2 )  <_  ( pi  / 
2 ) ) )
6461, 63mpbid 210 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  A )  /  2
)  <_  ( pi  /  2 ) )
65 pipos 21898 . . . . . . . . . . 11  |-  0  <  pi
663, 65elrpii 10986 . . . . . . . . . 10  |-  pi  e.  RR+
67 rphalflt 11009 . . . . . . . . . 10  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  < 
pi )
6866, 67mp1i 12 . . . . . . . . 9  |-  ( ph  ->  ( pi  /  2
)  <  pi )
6950, 58, 30, 64, 68lelttrd 9521 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  A )  /  2
)  <  pi )
70 elioo2 11333 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( B  -  A )  /  2
)  e.  ( 0 (,) pi )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  < 
pi ) ) )
7141, 42, 70mp2an 672 . . . . . . . 8  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,) pi )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  < 
pi ) )
7250, 56, 69, 71syl3anbrc 1172 . . . . . . 7  |-  ( ph  ->  ( ( B  -  A )  /  2
)  e.  ( 0 (,) pi ) )
73 sinq12gt0 21944 . . . . . . 7  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( B  -  A
)  /  2 ) ) )
7472, 73syl 16 . . . . . 6  |-  ( ph  ->  0  <  ( sin `  ( ( B  -  A )  /  2
) ) )
7551, 74elrpd 11017 . . . . 5  |-  ( ph  ->  ( sin `  (
( B  -  A
)  /  2 ) )  e.  RR+ )
7648, 75rpmulcld 11035 . . . 4  |-  ( ph  ->  ( ( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR+ )
77 rpmulcl 11004 . . . 4  |-  ( ( 2  e.  RR+  /\  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR+ )  ->  ( 2  x.  ( ( sin `  ( ( B  +  A )  /  2
) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  e.  RR+ )
7817, 76, 77sylancr 663 . . 3  |-  ( ph  ->  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) )  e.  RR+ )
7914, 78eqeltrd 2512 . 2  |-  ( ph  ->  ( ( cos `  A
)  -  ( cos `  B ) )  e.  RR+ )
806recoscld 13420 . . 3  |-  ( ph  ->  ( cos `  B
)  e.  RR )
8111recoscld 13420 . . 3  |-  ( ph  ->  ( cos `  A
)  e.  RR )
82 difrp 11016 . . 3  |-  ( ( ( cos `  B
)  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( ( cos `  B
)  <  ( cos `  A )  <->  ( ( cos `  A )  -  ( cos `  B ) )  e.  RR+ )
)
8380, 81, 82syl2anc 661 . 2  |-  ( ph  ->  ( ( cos `  B
)  <  ( cos `  A )  <->  ( ( cos `  A )  -  ( cos `  B ) )  e.  RR+ )
)
8479, 83mpbird 232 1  |-  ( ph  ->  ( cos `  B
)  <  ( cos `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274    + caddc 9277    x. cmul 9279   RR*cxr 9409    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   2c2 10363   RR+crp 10983   (,)cioo 11292   [,]cicc 11295   sincsin 13341   cosccos 13342   picpi 13344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-sin 13347  df-cos 13348  df-pi 13350  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-fbas 17789  df-fg 17790  df-cnfld 17794  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cld 18598  df-ntr 18599  df-cls 18600  df-nei 18677  df-lp 18715  df-perf 18716  df-cn 18806  df-cnp 18807  df-haus 18894  df-tx 19110  df-hmeo 19303  df-fil 19394  df-fm 19486  df-flim 19487  df-flf 19488  df-xms 19870  df-ms 19871  df-tms 19872  df-cncf 20429  df-limc 21316  df-dv 21317
This theorem is referenced by:  cosord  21963
  Copyright terms: Public domain W3C validator