MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coskpi Unicode version

Theorem coskpi 20381
Description: The absolute value of the cosine of an integer multiple of  pi is 1. (Contributed by NM, 19-Aug-2008.)
Assertion
Ref Expression
coskpi  |-  ( K  e.  ZZ  ->  ( abs `  ( cos `  ( K  x.  pi )
) )  =  1 )

Proof of Theorem coskpi
StepHypRef Expression
1 2cn 10026 . . . . . . . 8  |-  2  e.  CC
21mulid1i 9048 . . . . . . 7  |-  ( 2  x.  1 )  =  2
3 df-2 10014 . . . . . . 7  |-  2  =  ( 1  +  1 )
42, 3eqtr2i 2425 . . . . . 6  |-  ( 1  +  1 )  =  ( 2  x.  1 )
5 zcn 10243 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  CC )
6 pire 20325 . . . . . . . . . . . 12  |-  pi  e.  RR
76recni 9058 . . . . . . . . . . 11  |-  pi  e.  CC
8 mul12 9188 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  2  e.  CC  /\  pi  e.  CC )  ->  ( K  x.  ( 2  x.  pi ) )  =  ( 2  x.  ( K  x.  pi ) ) )
91, 7, 8mp3an23 1271 . . . . . . . . . 10  |-  ( K  e.  CC  ->  ( K  x.  ( 2  x.  pi ) )  =  ( 2  x.  ( K  x.  pi ) ) )
105, 9syl 16 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  ( K  x.  ( 2  x.  pi ) )  =  ( 2  x.  ( K  x.  pi ) ) )
1110fveq2d 5691 . . . . . . . 8  |-  ( K  e.  ZZ  ->  ( cos `  ( K  x.  ( 2  x.  pi ) ) )  =  ( cos `  (
2  x.  ( K  x.  pi ) ) ) )
12 cos2kpi 20345 . . . . . . . 8  |-  ( K  e.  ZZ  ->  ( cos `  ( K  x.  ( 2  x.  pi ) ) )  =  1 )
13 zre 10242 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  K  e.  RR )
14 remulcl 9031 . . . . . . . . . . 11  |-  ( ( K  e.  RR  /\  pi  e.  RR )  -> 
( K  x.  pi )  e.  RR )
1513, 6, 14sylancl 644 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  x.  pi )  e.  RR )
1615recnd 9070 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  ( K  x.  pi )  e.  CC )
17 cos2t 12734 . . . . . . . . 9  |-  ( ( K  x.  pi )  e.  CC  ->  ( cos `  ( 2  x.  ( K  x.  pi ) ) )  =  ( ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) )  -  1 ) )
1816, 17syl 16 . . . . . . . 8  |-  ( K  e.  ZZ  ->  ( cos `  ( 2  x.  ( K  x.  pi ) ) )  =  ( ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) )  -  1 ) )
1911, 12, 183eqtr3rd 2445 . . . . . . 7  |-  ( K  e.  ZZ  ->  (
( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) )  -  1 )  =  1 )
2015recoscld 12700 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( cos `  ( K  x.  pi ) )  e.  RR )
2120recnd 9070 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( cos `  ( K  x.  pi ) )  e.  CC )
2221sqcld 11476 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  (
( cos `  ( K  x.  pi )
) ^ 2 )  e.  CC )
23 mulcl 9030 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  ( ( cos `  ( K  x.  pi )
) ^ 2 )  e.  CC )  -> 
( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) )  e.  CC )
241, 22, 23sylancr 645 . . . . . . . 8  |-  ( K  e.  ZZ  ->  (
2  x.  ( ( cos `  ( K  x.  pi ) ) ^ 2 ) )  e.  CC )
25 ax-1cn 9004 . . . . . . . . 9  |-  1  e.  CC
26 subadd 9264 . . . . . . . . 9  |-  ( ( ( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) )  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) )  -  1 )  =  1  <->  ( 1  +  1 )  =  ( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) ) ) )
2725, 25, 26mp3an23 1271 . . . . . . . 8  |-  ( ( 2  x.  ( ( cos `  ( K  x.  pi ) ) ^ 2 ) )  e.  CC  ->  (
( ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) )  -  1 )  =  1  <->  ( 1  +  1 )  =  ( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) ) ) )
2824, 27syl 16 . . . . . . 7  |-  ( K  e.  ZZ  ->  (
( ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) )  -  1 )  =  1  <->  ( 1  +  1 )  =  ( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) ) ) )
2919, 28mpbid 202 . . . . . 6  |-  ( K  e.  ZZ  ->  (
1  +  1 )  =  ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) ) )
304, 29syl5reqr 2451 . . . . 5  |-  ( K  e.  ZZ  ->  (
2  x.  ( ( cos `  ( K  x.  pi ) ) ^ 2 ) )  =  ( 2  x.  1 ) )
31 2ne0 10039 . . . . . . . 8  |-  2  =/=  0
321, 31pm3.2i 442 . . . . . . 7  |-  ( 2  e.  CC  /\  2  =/=  0 )
33 mulcan 9615 . . . . . . 7  |-  ( ( ( ( cos `  ( K  x.  pi )
) ^ 2 )  e.  CC  /\  1  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) )  =  ( 2  x.  1 )  <->  ( ( cos `  ( K  x.  pi ) ) ^ 2 )  =  1 ) )
3425, 32, 33mp3an23 1271 . . . . . 6  |-  ( ( ( cos `  ( K  x.  pi )
) ^ 2 )  e.  CC  ->  (
( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) )  =  ( 2  x.  1 )  <->  ( ( cos `  ( K  x.  pi ) ) ^ 2 )  =  1 ) )
3522, 34syl 16 . . . . 5  |-  ( K  e.  ZZ  ->  (
( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) )  =  ( 2  x.  1 )  <->  ( ( cos `  ( K  x.  pi ) ) ^ 2 )  =  1 ) )
3630, 35mpbid 202 . . . 4  |-  ( K  e.  ZZ  ->  (
( cos `  ( K  x.  pi )
) ^ 2 )  =  1 )
37 sq1 11431 . . . 4  |-  ( 1 ^ 2 )  =  1
3836, 37syl6eqr 2454 . . 3  |-  ( K  e.  ZZ  ->  (
( cos `  ( K  x.  pi )
) ^ 2 )  =  ( 1 ^ 2 ) )
39 1re 9046 . . . 4  |-  1  e.  RR
40 sqabs 12067 . . . 4  |-  ( ( ( cos `  ( K  x.  pi )
)  e.  RR  /\  1  e.  RR )  ->  ( ( ( cos `  ( K  x.  pi ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( abs `  ( cos `  ( K  x.  pi )
) )  =  ( abs `  1 ) ) )
4120, 39, 40sylancl 644 . . 3  |-  ( K  e.  ZZ  ->  (
( ( cos `  ( K  x.  pi )
) ^ 2 )  =  ( 1 ^ 2 )  <->  ( abs `  ( cos `  ( K  x.  pi )
) )  =  ( abs `  1 ) ) )
4238, 41mpbid 202 . 2  |-  ( K  e.  ZZ  ->  ( abs `  ( cos `  ( K  x.  pi )
) )  =  ( abs `  1 ) )
43 abs1 12057 . 2  |-  ( abs `  1 )  =  1
4442, 43syl6eq 2452 1  |-  ( K  e.  ZZ  ->  ( abs `  ( cos `  ( K  x.  pi )
) )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    - cmin 9247   2c2 10005   ZZcz 10238   ^cexp 11337   abscabs 11994   cosccos 12622   picpi 12624
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707
  Copyright terms: Public domain W3C validator