MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coseq00topi Structured version   Unicode version

Theorem coseq00topi 23064
Description: Location of the zeroes of cosine in  ( 0 [,] pi ). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq00topi  |-  ( A  e.  ( 0 [,] pi )  ->  (
( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )

Proof of Theorem coseq00topi
StepHypRef Expression
1 simplr 753 . . . 4  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  ->  ( cos `  A )  =  0 )
2 simpl 455 . . . . . . . . . . . 12  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  ( 0 [,] pi ) )
3 0re 9585 . . . . . . . . . . . . 13  |-  0  e.  RR
4 pire 23020 . . . . . . . . . . . . 13  |-  pi  e.  RR
53, 4elicc2i 11593 . . . . . . . . . . . 12  |-  ( A  e.  ( 0 [,] pi )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
62, 5sylib 196 . . . . . . . . . . 11  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  -> 
( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
76simp1d 1006 . . . . . . . . . 10  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  ->  A  e.  RR )
87ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  /\  0  < 
A )  ->  A  e.  RR )
9 simpr 459 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  /\  0  < 
A )  ->  0  <  A )
10 simplr 753 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  /\  0  < 
A )  ->  A  <  ( pi  /  2
) )
113rexri 9635 . . . . . . . . . 10  |-  0  e.  RR*
12 halfpire 23026 . . . . . . . . . . 11  |-  ( pi 
/  2 )  e.  RR
1312rexri 9635 . . . . . . . . . 10  |-  ( pi 
/  2 )  e. 
RR*
14 elioo2 11573 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  ( A  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <  ( pi  /  2 ) ) ) )
1511, 13, 14mp2an 670 . . . . . . . . 9  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <  ( pi  /  2 ) ) )
168, 9, 10, 15syl3anbrc 1178 . . . . . . . 8  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  /\  0  < 
A )  ->  A  e.  ( 0 (,) (
pi  /  2 ) ) )
17 sincosq1sgn 23060 . . . . . . . 8  |-  ( A  e.  ( 0 (,) ( pi  /  2
) )  ->  (
0  <  ( sin `  A )  /\  0  <  ( cos `  A
) ) )
1816, 17syl 16 . . . . . . 7  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  /\  0  < 
A )  ->  (
0  <  ( sin `  A )  /\  0  <  ( cos `  A
) ) )
1918simprd 461 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  /\  0  < 
A )  ->  0  <  ( cos `  A
) )
2019gt0ne0d 10113 . . . . 5  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  /\  0  < 
A )  ->  ( cos `  A )  =/=  0 )
21 cos0 13970 . . . . . . 7  |-  ( cos `  0 )  =  1
22 simpr 459 . . . . . . . 8  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  /\  0  =  A )  ->  0  =  A )
2322fveq2d 5852 . . . . . . 7  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  /\  0  =  A )  ->  ( cos `  0 )  =  ( cos `  A
) )
2421, 23syl5reqr 2510 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  /\  0  =  A )  ->  ( cos `  A )  =  1 )
25 ax-1ne0 9550 . . . . . . 7  |-  1  =/=  0
2625a1i 11 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  /\  0  =  A )  ->  1  =/=  0 )
2724, 26eqnetrd 2747 . . . . 5  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  /\  0  =  A )  ->  ( cos `  A )  =/=  0 )
286simp2d 1007 . . . . . . 7  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  -> 
0  <_  A )
29 0red 9586 . . . . . . . 8  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  -> 
0  e.  RR )
3029, 7leloed 9717 . . . . . . 7  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  -> 
( 0  <_  A  <->  ( 0  <  A  \/  0  =  A )
) )
3128, 30mpbid 210 . . . . . 6  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  -> 
( 0  <  A  \/  0  =  A
) )
3231adantr 463 . . . . 5  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  ->  ( 0  <  A  \/  0  =  A ) )
3320, 27, 32mpjaodan 784 . . . 4  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  ->  ( cos `  A )  =/=  0
)
341, 33pm2.21ddne 2768 . . 3  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  <  (
pi  /  2 ) )  ->  A  =  ( pi  /  2
) )
35 simpr 459 . . 3  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  A  =  ( pi  /  2 ) )  ->  A  =  ( pi  /  2
) )
36 simplr 753 . . . 4  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  ->  ( cos `  A )  =  0 )
377ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  /\  A  <  pi )  ->  A  e.  RR )
38 simplr 753 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  /\  A  <  pi )  ->  ( pi  /  2 )  <  A
)
39 simpr 459 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  /\  A  <  pi )  ->  A  <  pi )
404rexri 9635 . . . . . . . . . 10  |-  pi  e.  RR*
41 elioo2 11573 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  RR*  /\  pi  e.  RR* )  ->  ( A  e.  ( (
pi  /  2 ) (,) pi )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  pi ) ) )
4213, 40, 41mp2an 670 . . . . . . . . 9  |-  ( A  e.  ( ( pi 
/  2 ) (,) pi )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  pi ) )
4337, 38, 39, 42syl3anbrc 1178 . . . . . . . 8  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  /\  A  <  pi )  ->  A  e.  ( ( pi  / 
2 ) (,) pi ) )
44 sincosq2sgn 23061 . . . . . . . 8  |-  ( A  e.  ( ( pi 
/  2 ) (,) pi )  ->  (
0  <  ( sin `  A )  /\  ( cos `  A )  <  0 ) )
4543, 44syl 16 . . . . . . 7  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  /\  A  <  pi )  ->  ( 0  <  ( sin `  A
)  /\  ( cos `  A )  <  0
) )
4645simprd 461 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  /\  A  <  pi )  ->  ( cos `  A )  <  0
)
4746lt0ne0d 10114 . . . . 5  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  /\  A  <  pi )  ->  ( cos `  A )  =/=  0
)
48 simpr 459 . . . . . . . 8  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  /\  A  =  pi )  ->  A  =  pi )
4948fveq2d 5852 . . . . . . 7  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  /\  A  =  pi )  ->  ( cos `  A )  =  ( cos `  pi ) )
50 cospi 23034 . . . . . . 7  |-  ( cos `  pi )  =  -u
1
5149, 50syl6eq 2511 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  /\  A  =  pi )  ->  ( cos `  A )  =  -u
1 )
52 neg1ne0 10637 . . . . . . 7  |-  -u 1  =/=  0
5352a1i 11 . . . . . 6  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  /\  A  =  pi )  ->  -u 1  =/=  0 )
5451, 53eqnetrd 2747 . . . . 5  |-  ( ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  /\  A  =  pi )  ->  ( cos `  A )  =/=  0
)
556simp3d 1008 . . . . . . 7  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  ->  A  <_  pi )
564a1i 11 . . . . . . . 8  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  ->  pi  e.  RR )
577, 56leloed 9717 . . . . . . 7  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  -> 
( A  <_  pi  <->  ( A  <  pi  \/  A  =  pi )
) )
5855, 57mpbid 210 . . . . . 6  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  -> 
( A  <  pi  \/  A  =  pi ) )
5958adantr 463 . . . . 5  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  ->  ( A  <  pi  \/  A  =  pi ) )
6047, 54, 59mpjaodan 784 . . . 4  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  ->  ( cos `  A )  =/=  0
)
6136, 60pm2.21ddne 2768 . . 3  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A
)  =  0 )  /\  ( pi  / 
2 )  <  A
)  ->  A  =  ( pi  /  2
) )
6256rehalfcld 10781 . . . 4  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  -> 
( pi  /  2
)  e.  RR )
637, 62lttri4d 9715 . . 3  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  -> 
( A  <  (
pi  /  2 )  \/  A  =  ( pi  /  2 )  \/  ( pi  / 
2 )  <  A
) )
6434, 35, 61, 63mpjao3dan 1293 . 2  |-  ( ( A  e.  ( 0 [,] pi )  /\  ( cos `  A )  =  0 )  ->  A  =  ( pi  /  2 ) )
65 fveq2 5848 . . . 4  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  ( cos `  (
pi  /  2 ) ) )
66 coshalfpi 23031 . . . 4  |-  ( cos `  ( pi  /  2
) )  =  0
6765, 66syl6eq 2511 . . 3  |-  ( A  =  ( pi  / 
2 )  ->  ( cos `  A )  =  0 )
6867adantl 464 . 2  |-  ( ( A  e.  ( 0 [,] pi )  /\  A  =  ( pi  /  2 ) )  -> 
( cos `  A
)  =  0 )
6964, 68impbida 830 1  |-  ( A  e.  ( 0 [,] pi )  ->  (
( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   RRcr 9480   0cc0 9481   1c1 9482   RR*cxr 9616    < clt 9617    <_ cle 9618   -ucneg 9797    / cdiv 10202   2c2 10581   (,)cioo 11532   [,]cicc 11535   sincsin 13884   cosccos 13885   picpi 13887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12093  df-exp 12152  df-fac 12339  df-bc 12366  df-hash 12391  df-shft 12985  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-limsup 13379  df-clim 13396  df-rlim 13397  df-sum 13594  df-ef 13888  df-sin 13890  df-cos 13891  df-pi 13893  df-struct 14721  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-mulr 14801  df-starv 14802  df-sca 14803  df-vsca 14804  df-ip 14805  df-tset 14806  df-ple 14807  df-ds 14809  df-unif 14810  df-hom 14811  df-cco 14812  df-rest 14915  df-topn 14916  df-0g 14934  df-gsum 14935  df-topgen 14936  df-pt 14937  df-prds 14940  df-xrs 14994  df-qtop 14999  df-imas 15000  df-xps 15002  df-mre 15078  df-mrc 15079  df-acs 15081  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-submnd 16169  df-mulg 16262  df-cntz 16557  df-cmn 17002  df-psmet 18609  df-xmet 18610  df-met 18611  df-bl 18612  df-mopn 18613  df-fbas 18614  df-fg 18615  df-cnfld 18619  df-top 19569  df-bases 19571  df-topon 19572  df-topsp 19573  df-cld 19690  df-ntr 19691  df-cls 19692  df-nei 19769  df-lp 19807  df-perf 19808  df-cn 19898  df-cnp 19899  df-haus 19986  df-tx 20232  df-hmeo 20425  df-fil 20516  df-fm 20608  df-flim 20609  df-flf 20610  df-xms 20992  df-ms 20993  df-tms 20994  df-cncf 21551  df-limc 22439  df-dv 22440
This theorem is referenced by:  coseq0negpitopi  23065
  Copyright terms: Public domain W3C validator