MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coscl Structured version   Unicode version

Theorem coscl 13515
Description: Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
coscl  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )

Proof of Theorem coscl
StepHypRef Expression
1 cosf 13513 . 2  |-  cos : CC
--> CC
21ffvelrni 5943 1  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1758   ` cfv 5518   CCcc 9383   cosccos 13454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462  ax-pre-sup 9463  ax-addf 9464  ax-mulf 9465
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-1o 7022  df-oadd 7026  df-er 7203  df-pm 7319  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-sup 7794  df-oi 7827  df-card 8212  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-div 10097  df-nn 10426  df-2 10483  df-3 10484  df-n0 10683  df-z 10750  df-uz 10965  df-rp 11095  df-ico 11409  df-fz 11541  df-fzo 11652  df-fl 11745  df-seq 11910  df-exp 11969  df-fac 12155  df-hash 12207  df-shft 12660  df-cj 12692  df-re 12693  df-im 12694  df-sqr 12828  df-abs 12829  df-limsup 13053  df-clim 13070  df-rlim 13071  df-sum 13268  df-ef 13457  df-cos 13460
This theorem is referenced by:  tanval  13516  tancl  13517  coscld  13519  tanneg  13536  efmival  13541  sinadd  13552  cosadd  13553  tanaddlem  13554  sinsub  13556  cossub  13557  subsin  13559  sinmul  13560  cosmul  13561  addcos  13562  subcos  13563  sincossq  13564  sin2t  13565  cos2t  13566  cos2tsin  13567  demoivreALT  13589  sinhalfpilem  22043  sinmpi  22067  cosmpi  22068  sinppi  22069  cosppi  22070  efimpi  22071  sinhalfpip  22072  sinhalfpim  22073  coshalfpip  22074  coshalfpim  22075  asinsin  22405  acoscos  22406  atandmtan  22433  atantan  22436  sin2h  28562  cos2h  28563  tan2h  28564  dvtan  28582  itgsinexplem1  29934  itgsinexp  29935  seccl  31383  cotcl  31385  recsec  31389  reccot  31391  rectan  31392  onetansqsecsq  31394  cotsqcscsq  31395
  Copyright terms: Public domain W3C validator