MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosadd Structured version   Unicode version

Theorem cosadd 13777
Description: Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cosadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )

Proof of Theorem cosadd
StepHypRef Expression
1 addcl 9577 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
2 cosval 13735 . . 3  |-  ( ( A  +  B )  e.  CC  ->  ( cos `  ( A  +  B ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  +  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  /  2 ) )
31, 2syl 16 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( exp `  (
_i  x.  ( A  +  B ) ) )  +  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  /  2
) )
4 coscl 13739 . . . . . . . 8  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
54adantr 465 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  A
)  e.  CC )
6 coscl 13739 . . . . . . . 8  |-  ( B  e.  CC  ->  ( cos `  B )  e.  CC )
76adantl 466 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  B
)  e.  CC )
85, 7mulcld 9619 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC )
9 ax-icn 9554 . . . . . . . 8  |-  _i  e.  CC
10 sincl 13738 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( sin `  B )  e.  CC )
1110adantl 466 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  B
)  e.  CC )
12 mulcl 9579 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( sin `  B )  e.  CC )  -> 
( _i  x.  ( sin `  B ) )  e.  CC )
139, 11, 12sylancr 663 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( sin `  B ) )  e.  CC )
14 sincl 13738 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
1514adantr 465 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  A
)  e.  CC )
16 mulcl 9579 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( _i  x.  ( sin `  A ) )  e.  CC )
179, 15, 16sylancr 663 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( sin `  A ) )  e.  CC )
1813, 17mulcld 9619 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) )  e.  CC )
198, 18addcld 9618 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )
205, 13mulcld 9619 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  e.  CC )
217, 17mulcld 9619 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) )  e.  CC )
2220, 21addcld 9618 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )
2319, 22, 19ppncand 9976 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  +  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )  =  ( ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
24 adddi 9584 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
_i  x.  ( A  +  B ) )  =  ( ( _i  x.  A )  +  ( _i  x.  B ) ) )
259, 24mp3an1 1312 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( A  +  B )
)  =  ( ( _i  x.  A )  +  ( _i  x.  B ) ) )
2625fveq2d 5860 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
_i  x.  ( A  +  B ) ) )  =  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) ) )
27 simpl 457 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
28 mulcl 9579 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
299, 27, 28sylancr 663 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
30 simpr 461 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
31 mulcl 9579 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
329, 30, 31sylancr 663 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
33 efadd 13707 . . . . . . 7  |-  ( ( ( _i  x.  A
)  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  B )
) ) )
3429, 32, 33syl2anc 661 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  B )
) ) )
35 efival 13764 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
36 efival 13764 . . . . . . . 8  |-  ( B  e.  CC  ->  ( exp `  ( _i  x.  B ) )  =  ( ( cos `  B
)  +  ( _i  x.  ( sin `  B
) ) ) )
3735, 36oveqan12d 6300 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  B
) ) )  =  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  +  ( _i  x.  ( sin `  B ) ) ) ) )
385, 17, 7, 13muladdd 10020 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  +  ( _i  x.  ( sin `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
3937, 38eqtrd 2484 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  B
) ) )  =  ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) ) )
4026, 34, 393eqtrd 2488 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
_i  x.  ( A  +  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
41 negicn 9826 . . . . . . . 8  |-  -u _i  e.  CC
42 adddi 9584 . . . . . . . 8  |-  ( (
-u _i  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  ( A  +  B
) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) )
4341, 42mp3an1 1312 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  ( A  +  B
) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) )
4443fveq2d 5860 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( -u _i  x.  ( A  +  B ) ) )  =  ( exp `  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) ) )
45 mulcl 9579 . . . . . . . 8  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
4641, 27, 45sylancr 663 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
47 mulcl 9579 . . . . . . . 8  |-  ( (
-u _i  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  B )  e.  CC )
4841, 30, 47sylancr 663 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  B )  e.  CC )
49 efadd 13707 . . . . . . 7  |-  ( ( ( -u _i  x.  A )  e.  CC  /\  ( -u _i  x.  B )  e.  CC )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( -u _i  x.  B ) ) )  =  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) ) )
5046, 48, 49syl2anc 661 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( -u _i  x.  B ) ) )  =  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) ) )
51 efmival 13765 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  =  ( ( cos `  A
)  -  ( _i  x.  ( sin `  A
) ) ) )
52 efmival 13765 . . . . . . . 8  |-  ( B  e.  CC  ->  ( exp `  ( -u _i  x.  B ) )  =  ( ( cos `  B
)  -  ( _i  x.  ( sin `  B
) ) ) )
5351, 52oveqan12d 6300 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) )  =  ( ( ( cos `  A )  -  ( _i  x.  ( sin `  A ) ) )  x.  (
( cos `  B
)  -  ( _i  x.  ( sin `  B
) ) ) ) )
545, 17, 7, 13mulsubd 10021 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  -  (
_i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  -  (
_i  x.  ( sin `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
5553, 54eqtrd 2484 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
5644, 50, 553eqtrd 2488 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( -u _i  x.  ( A  +  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
5740, 56oveq12d 6299 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  ( A  +  B ) ) )  +  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  =  ( ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  +  ( ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  -  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) ) )
58192timesd 10787 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) ) ) )
5923, 57, 583eqtr4d 2494 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  ( A  +  B ) ) )  +  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  =  ( 2  x.  ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
6059oveq1d 6296 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  +  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  /  2 )  =  ( ( 2  x.  ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) ) )  /  2 ) )
61 2cn 10612 . . . . 5  |-  2  e.  CC
62 2ne0 10634 . . . . 5  |-  2  =/=  0
63 divcan3 10237 . . . . 5  |-  ( ( ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  (
( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) ) )  /  2 )  =  ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) ) )
6461, 62, 63mp3an23 1317 . . . 4  |-  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  e.  CC  ->  (
( 2  x.  (
( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) ) )  /  2 )  =  ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) ) )
6519, 64syl 16 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  /  2
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) ) )
669a1i 11 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
6766, 11, 66, 15mul4d 9795 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) )  =  ( ( _i  x.  _i )  x.  (
( sin `  B
)  x.  ( sin `  A ) ) ) )
68 ixi 10184 . . . . . . 7  |-  ( _i  x.  _i )  = 
-u 1
6968oveq1i 6291 . . . . . 6  |-  ( ( _i  x.  _i )  x.  ( ( sin `  B )  x.  ( sin `  A ) ) )  =  ( -u
1  x.  ( ( sin `  B )  x.  ( sin `  A
) ) )
7011, 15mulcomd 9620 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  B
)  x.  ( sin `  A ) )  =  ( ( sin `  A
)  x.  ( sin `  B ) ) )
7170oveq2d 6297 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( ( sin `  B
)  x.  ( sin `  A ) ) )  =  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
7269, 71syl5eq 2496 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  _i )  x.  (
( sin `  B
)  x.  ( sin `  A ) ) )  =  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
7315, 11mulcld 9619 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( sin `  B ) )  e.  CC )
7473mulm1d 10014 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  B ) ) )  =  -u ( ( sin `  A )  x.  ( sin `  B ) ) )
7567, 72, 743eqtrd 2488 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) )  = 
-u ( ( sin `  A )  x.  ( sin `  B ) ) )
7675oveq2d 6297 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  + 
-u ( ( sin `  A )  x.  ( sin `  B ) ) ) )
778, 73negsubd 9942 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  -u ( ( sin `  A )  x.  ( sin `  B ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
7865, 76, 773eqtrd 2488 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  /  2
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
793, 60, 783eqtrd 2488 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   ` cfv 5578  (class class class)co 6281   CCcc 9493   0cc0 9495   1c1 9496   _ici 9497    + caddc 9498    x. cmul 9500    - cmin 9810   -ucneg 9811    / cdiv 10212   2c2 10591   expce 13675   sincsin 13677   cosccos 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-oi 7938  df-card 8323  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-n0 10802  df-z 10871  df-uz 11091  df-rp 11230  df-ico 11544  df-fz 11682  df-fzo 11804  df-fl 11908  df-seq 12087  df-exp 12146  df-fac 12333  df-bc 12360  df-hash 12385  df-shft 12879  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-limsup 13273  df-clim 13290  df-rlim 13291  df-sum 13488  df-ef 13681  df-sin 13683  df-cos 13684
This theorem is referenced by:  tanaddlem  13778  tanadd  13779  cossub  13781  sinmul  13784  cosmul  13785  addcos  13786  subcos  13787  sincossq  13788  cos2t  13790  demoivreALT  13813  cosppi  22755  coshalfpip  22759
  Copyright terms: Public domain W3C validator