MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos1bnd Structured version   Visualization version   Unicode version

Theorem cos1bnd 14289
Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos1bnd  |-  ( ( 1  /  3 )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
2  /  3 ) )

Proof of Theorem cos1bnd
StepHypRef Expression
1 sq1 12400 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
21oveq1i 6324 . . . . . . 7  |-  ( ( 1 ^ 2 )  /  3 )  =  ( 1  /  3
)
32oveq2i 6325 . . . . . 6  |-  ( 2  x.  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 2  x.  (
1  /  3 ) )
4 2cn 10707 . . . . . . 7  |-  2  e.  CC
5 3cn 10711 . . . . . . 7  |-  3  e.  CC
6 3ne0 10731 . . . . . . 7  |-  3  =/=  0
74, 5, 6divreci 10379 . . . . . 6  |-  ( 2  /  3 )  =  ( 2  x.  (
1  /  3 ) )
83, 7eqtr4i 2486 . . . . 5  |-  ( 2  x.  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 2  /  3
)
98oveq2i 6325 . . . 4  |-  ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  /  3
) ) )  =  ( 1  -  (
2  /  3 ) )
10 ax-1cn 9622 . . . . 5  |-  1  e.  CC
114, 5, 6divcli 10376 . . . . 5  |-  ( 2  /  3 )  e.  CC
125, 6reccli 10364 . . . . 5  |-  ( 1  /  3 )  e.  CC
13 df-3 10696 . . . . . . 7  |-  3  =  ( 2  +  1 )
1413oveq1i 6324 . . . . . 6  |-  ( 3  /  3 )  =  ( ( 2  +  1 )  /  3
)
155, 6dividi 10367 . . . . . 6  |-  ( 3  /  3 )  =  1
164, 10, 5, 6divdiri 10391 . . . . . 6  |-  ( ( 2  +  1 )  /  3 )  =  ( ( 2  / 
3 )  +  ( 1  /  3 ) )
1714, 15, 163eqtr3ri 2492 . . . . 5  |-  ( ( 2  /  3 )  +  ( 1  / 
3 ) )  =  1
1810, 11, 12, 17subaddrii 9989 . . . 4  |-  ( 1  -  ( 2  / 
3 ) )  =  ( 1  /  3
)
199, 18eqtri 2483 . . 3  |-  ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  /  3
) ) )  =  ( 1  /  3
)
20 1re 9667 . . . . 5  |-  1  e.  RR
21 0lt1 10163 . . . . 5  |-  0  <  1
22 1le1 10267 . . . . 5  |-  1  <_  1
23 0xr 9712 . . . . . . 7  |-  0  e.  RR*
24 elioc2 11725 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
1  e.  ( 0 (,] 1 )  <->  ( 1  e.  RR  /\  0  <  1  /\  1  <_ 
1 ) ) )
2523, 20, 24mp2an 683 . . . . . 6  |-  ( 1  e.  ( 0 (,] 1 )  <->  ( 1  e.  RR  /\  0  <  1  /\  1  <_ 
1 ) )
26 cos01bnd 14288 . . . . . 6  |-  ( 1  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( 1 ^ 2 )  /  3 ) ) )  <  ( cos `  1 )  /\  ( cos `  1 )  <  ( 1  -  ( ( 1 ^ 2 )  /  3
) ) ) )
2725, 26sylbir 218 . . . . 5  |-  ( ( 1  e.  RR  /\  0  <  1  /\  1  <_  1 )  ->  (
( 1  -  (
2  x.  ( ( 1 ^ 2 )  /  3 ) ) )  <  ( cos `  1 )  /\  ( cos `  1 )  <  ( 1  -  ( ( 1 ^ 2 )  /  3
) ) ) )
2820, 21, 22, 27mp3an 1373 . . . 4  |-  ( ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  / 
3 ) ) )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
1  -  ( ( 1 ^ 2 )  /  3 ) ) )
2928simpli 464 . . 3  |-  ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  /  3
) ) )  < 
( cos `  1
)
3019, 29eqbrtrri 4437 . 2  |-  ( 1  /  3 )  < 
( cos `  1
)
3128simpri 468 . . 3  |-  ( cos `  1 )  < 
( 1  -  (
( 1 ^ 2 )  /  3 ) )
322oveq2i 6325 . . . 4  |-  ( 1  -  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 1  -  (
1  /  3 ) )
3310, 12, 11subadd2i 9988 . . . . 5  |-  ( ( 1  -  ( 1  /  3 ) )  =  ( 2  / 
3 )  <->  ( (
2  /  3 )  +  ( 1  / 
3 ) )  =  1 )
3417, 33mpbir 214 . . . 4  |-  ( 1  -  ( 1  / 
3 ) )  =  ( 2  /  3
)
3532, 34eqtri 2483 . . 3  |-  ( 1  -  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 2  /  3
)
3631, 35breqtri 4439 . 2  |-  ( cos `  1 )  < 
( 2  /  3
)
3730, 36pm3.2i 461 1  |-  ( ( 1  /  3 )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
2  /  3 ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1454    e. wcel 1897   class class class wbr 4415   ` cfv 5600  (class class class)co 6314   RRcr 9563   0cc0 9564   1c1 9565    + caddc 9567    x. cmul 9569   RR*cxr 9699    < clt 9700    <_ cle 9701    - cmin 9885    / cdiv 10296   2c2 10686   3c3 10687   (,]cioc 11664   ^cexp 12303   cosccos 14165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-inf2 8171  ax-cnex 9620  ax-resscn 9621  ax-1cn 9622  ax-icn 9623  ax-addcl 9624  ax-addrcl 9625  ax-mulcl 9626  ax-mulrcl 9627  ax-mulcom 9628  ax-addass 9629  ax-mulass 9630  ax-distr 9631  ax-i2m1 9632  ax-1ne0 9633  ax-1rid 9634  ax-rnegex 9635  ax-rrecex 9636  ax-cnre 9637  ax-pre-lttri 9638  ax-pre-lttrn 9639  ax-pre-ltadd 9640  ax-pre-mulgt0 9641  ax-pre-sup 9642  ax-addf 9643  ax-mulf 9644
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-fal 1460  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rmo 2756  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-int 4248  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-se 4812  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-isom 5609  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-om 6719  df-1st 6819  df-2nd 6820  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-1o 7207  df-oadd 7211  df-er 7388  df-pm 7500  df-en 7595  df-dom 7596  df-sdom 7597  df-fin 7598  df-sup 7981  df-inf 7982  df-oi 8050  df-card 8398  df-pnf 9702  df-mnf 9703  df-xr 9704  df-ltxr 9705  df-le 9706  df-sub 9887  df-neg 9888  df-div 10297  df-nn 10637  df-2 10695  df-3 10696  df-4 10697  df-5 10698  df-6 10699  df-7 10700  df-8 10701  df-n0 10898  df-z 10966  df-uz 11188  df-rp 11331  df-ioc 11668  df-ico 11669  df-fz 11813  df-fzo 11946  df-fl 12059  df-seq 12245  df-exp 12304  df-fac 12491  df-hash 12547  df-shft 13178  df-cj 13210  df-re 13211  df-im 13212  df-sqrt 13346  df-abs 13347  df-limsup 13574  df-clim 13600  df-rlim 13601  df-sum 13801  df-ef 14169  df-cos 14172
This theorem is referenced by:  cos2bnd  14290
  Copyright terms: Public domain W3C validator