MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos01gt0 Structured version   Unicode version

Theorem cos01gt0 13776
Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos01gt0  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  A
) )

Proof of Theorem cos01gt0
StepHypRef Expression
1 0xr 9629 . . . . . . . . . 10  |-  0  e.  RR*
2 1re 9584 . . . . . . . . . 10  |-  1  e.  RR
3 elioc2 11576 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 672 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 1006 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
65resqcld 12291 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  RR )
76recnd 9611 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  CC )
8 2cn 10595 . . . . . . 7  |-  2  e.  CC
9 3cn 10599 . . . . . . . 8  |-  3  e.  CC
10 3ne0 10619 . . . . . . . 8  |-  3  =/=  0
119, 10pm3.2i 455 . . . . . . 7  |-  ( 3  e.  CC  /\  3  =/=  0 )
12 div12 10218 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( A ^ 2 )  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( 2  x.  ( ( A ^
2 )  /  3
) )  =  ( ( A ^ 2 )  x.  ( 2  /  3 ) ) )
138, 11, 12mp3an13 1310 . . . . . 6  |-  ( ( A ^ 2 )  e.  CC  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
147, 13syl 16 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
15 2z 10885 . . . . . . . . . 10  |-  2  e.  ZZ
16 expgt0 12154 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  2  e.  ZZ  /\  0  <  A )  ->  0  <  ( A ^ 2 ) )
1715, 16mp3an2 1307 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A ^ 2 ) )
18173adant3 1011 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  1 )  ->  0  <  ( A ^ 2 ) )
194, 18sylbi 195 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( A ^ 2 ) )
20 2lt3 10692 . . . . . . . . . 10  |-  2  <  3
21 2re 10594 . . . . . . . . . . 11  |-  2  e.  RR
22 3re 10598 . . . . . . . . . . 11  |-  3  e.  RR
23 3pos 10618 . . . . . . . . . . 11  |-  0  <  3
2421, 22, 22, 23ltdiv1ii 10464 . . . . . . . . . 10  |-  ( 2  <  3  <->  ( 2  /  3 )  < 
( 3  /  3
) )
2520, 24mpbi 208 . . . . . . . . 9  |-  ( 2  /  3 )  < 
( 3  /  3
)
269, 10dividi 10266 . . . . . . . . 9  |-  ( 3  /  3 )  =  1
2725, 26breqtri 4463 . . . . . . . 8  |-  ( 2  /  3 )  <  1
2821, 22, 10redivcli 10300 . . . . . . . . 9  |-  ( 2  /  3 )  e.  RR
29 ltmul2 10382 . . . . . . . . 9  |-  ( ( ( 2  /  3
)  e.  RR  /\  1  e.  RR  /\  (
( A ^ 2 )  e.  RR  /\  0  <  ( A ^
2 ) ) )  ->  ( ( 2  /  3 )  <  1  <->  ( ( A ^ 2 )  x.  ( 2  /  3
) )  <  (
( A ^ 2 )  x.  1 ) ) )
3028, 2, 29mp3an12 1309 . . . . . . . 8  |-  ( ( ( A ^ 2 )  e.  RR  /\  0  <  ( A ^
2 ) )  -> 
( ( 2  / 
3 )  <  1  <->  ( ( A ^ 2 )  x.  ( 2  /  3 ) )  <  ( ( A ^ 2 )  x.  1 ) ) )
3127, 30mpbii 211 . . . . . . 7  |-  ( ( ( A ^ 2 )  e.  RR  /\  0  <  ( A ^
2 ) )  -> 
( ( A ^
2 )  x.  (
2  /  3 ) )  <  ( ( A ^ 2 )  x.  1 ) )
326, 19, 31syl2anc 661 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 2  /  3 ) )  <  ( ( A ^ 2 )  x.  1 ) )
337mulid1d 9602 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  1 )  =  ( A ^
2 ) )
3432, 33breqtrd 4464 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 2  /  3 ) )  <  ( A ^
2 ) )
3514, 34eqbrtrd 4460 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  <  ( A ^
2 ) )
36 0re 9585 . . . . . . . . . 10  |-  0  e.  RR
37 ltle 9662 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
3836, 37mpan 670 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
0  <  A  ->  0  <_  A ) )
3938imdistani 690 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  e.  RR  /\  0  <_  A )
)
40 le2sq2 12198 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  A  <_  1 ) )  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
412, 40mpanr1 683 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  A  <_  1 )  ->  ( A ^
2 )  <_  (
1 ^ 2 ) )
4239, 41sylan 471 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  A  <_  1
)  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
43423impa 1186 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  1 )  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
444, 43sylbi 195 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
45 sq1 12217 . . . . 5  |-  ( 1 ^ 2 )  =  1
4644, 45syl6breq 4479 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  <_ 
1 )
47 redivcl 10252 . . . . . . . 8  |-  ( ( ( A ^ 2 )  e.  RR  /\  3  e.  RR  /\  3  =/=  0 )  ->  (
( A ^ 2 )  /  3 )  e.  RR )
4822, 10, 47mp3an23 1311 . . . . . . 7  |-  ( ( A ^ 2 )  e.  RR  ->  (
( A ^ 2 )  /  3 )  e.  RR )
496, 48syl 16 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  3 )  e.  RR )
50 remulcl 9566 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( ( A ^
2 )  /  3
)  e.  RR )  ->  ( 2  x.  ( ( A ^
2 )  /  3
) )  e.  RR )
5121, 49, 50sylancr 663 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  e.  RR )
52 ltletr 9665 . . . . . 6  |-  ( ( ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR  /\  ( A ^ 2 )  e.  RR  /\  1  e.  RR )  ->  (
( ( 2  x.  ( ( A ^
2 )  /  3
) )  <  ( A ^ 2 )  /\  ( A ^ 2 )  <_  1 )  -> 
( 2  x.  (
( A ^ 2 )  /  3 ) )  <  1 ) )
532, 52mp3an3 1308 . . . . 5  |-  ( ( ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR  /\  ( A ^ 2 )  e.  RR )  -> 
( ( ( 2  x.  ( ( A ^ 2 )  / 
3 ) )  < 
( A ^ 2 )  /\  ( A ^ 2 )  <_ 
1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  <  1 ) )
5451, 6, 53syl2anc 661 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( 2  x.  ( ( A ^
2 )  /  3
) )  <  ( A ^ 2 )  /\  ( A ^ 2 )  <_  1 )  -> 
( 2  x.  (
( A ^ 2 )  /  3 ) )  <  1 ) )
5535, 46, 54mp2and 679 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  <  1 )
56 posdif 10034 . . . 4  |-  ( ( ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  ( ( A ^
2 )  /  3
) )  <  1  <->  0  <  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) ) )
5751, 2, 56sylancl 662 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 2  x.  (
( A ^ 2 )  /  3 ) )  <  1  <->  0  <  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) ) )
5855, 57mpbid 210 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) ) )
59 cos01bnd 13771 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  <  ( cos `  A )  /\  ( cos `  A )  < 
( 1  -  (
( A ^ 2 )  /  3 ) ) ) )
6059simpld 459 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  <  ( cos `  A
) )
61 resubcl 9872 . . . 4  |-  ( ( 1  e.  RR  /\  ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR )  ->  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) )  e.  RR )
622, 51, 61sylancr 663 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  e.  RR )
635recoscld 13729 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  e.  RR )
64 lttr 9650 . . . 4  |-  ( ( 0  e.  RR  /\  ( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( ( 0  < 
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  /\  ( 1  -  ( 2  x.  ( ( A ^
2 )  /  3
) ) )  < 
( cos `  A
) )  ->  0  <  ( cos `  A
) ) )
6536, 64mp3an1 1306 . . 3  |-  ( ( ( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( ( 0  < 
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  /\  ( 1  -  ( 2  x.  ( ( A ^
2 )  /  3
) ) )  < 
( cos `  A
) )  ->  0  <  ( cos `  A
) ) )
6662, 63, 65syl2anc 661 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 0  <  (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  /\  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) )  <  ( cos `  A ) )  ->  0  <  ( cos `  A ) ) )
6758, 60, 66mp2and 679 1  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    x. cmul 9486   RR*cxr 9616    < clt 9617    <_ cle 9618    - cmin 9794    / cdiv 10195   2c2 10574   3c3 10575   ZZcz 10853   (,]cioc 11519   ^cexp 12122   cosccos 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-oi 7924  df-card 8309  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-n0 10785  df-z 10854  df-uz 11072  df-rp 11210  df-ioc 11523  df-ico 11524  df-fz 11662  df-fzo 11782  df-fl 11886  df-seq 12064  df-exp 12123  df-fac 12309  df-hash 12361  df-shft 12850  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-limsup 13243  df-clim 13260  df-rlim 13261  df-sum 13458  df-ef 13654  df-cos 13657
This theorem is referenced by:  sin02gt0  13777  sincos1sgn  13778  tangtx  22624
  Copyright terms: Public domain W3C validator