MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos01bnd Structured version   Unicode version

Theorem cos01bnd 13452
Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cos01bnd  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  <  ( cos `  A )  /\  ( cos `  A )  < 
( 1  -  (
( A ^ 2 )  /  3 ) ) ) )

Proof of Theorem cos01bnd
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 9417 . . . . . . . . 9  |-  0  e.  RR*
2 1re 9372 . . . . . . . . 9  |-  1  e.  RR
3 elioc2 11345 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 665 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 996 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
6 eqid 2433 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) )
76recos4p 13405 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  A )  =  ( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
85, 7syl 16 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  =  ( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
98eqcomd 2438 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( Re
`  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )  =  ( cos `  A
) )
105recoscld 13410 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  e.  RR )
1110recnd 9399 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  e.  CC )
125resqcld 12017 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  RR )
1312rehalfcld 10558 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  2 )  e.  RR )
14 resubcl 9660 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( ( A ^
2 )  /  2
)  e.  RR )  ->  ( 1  -  ( ( A ^
2 )  /  2
) )  e.  RR )
152, 13, 14sylancr 656 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( A ^ 2 )  /  2 ) )  e.  RR )
1615recnd 9399 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( A ^ 2 )  /  2 ) )  e.  CC )
17 ax-icn 9328 . . . . . . . . . 10  |-  _i  e.  CC
185recnd 9399 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
19 mulcl 9353 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
2017, 18, 19sylancr 656 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
_i  x.  A )  e.  CC )
21 4nn0 10585 . . . . . . . . 9  |-  4  e.  NN0
226eftlcl 13373 . . . . . . . . 9  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
2320, 21, 22sylancl 655 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
2423recld 12666 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  RR )
2524recnd 9399 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  CC )
2611, 16, 25subaddd 9724 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( cos `  A
)  -  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) )  =  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) )  <-> 
( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) )  =  ( cos `  A
) ) )
279, 26mpbird 232 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( cos `  A
)  -  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) )  =  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )
2827fveq2d 5683 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( cos `  A )  -  (
1  -  ( ( A ^ 2 )  /  2 ) ) ) )  =  ( abs `  ( Re
`  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) ) )
2925abscld 12905 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  e.  RR )
3023abscld 12905 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  e.  RR )
31 6nn 10470 . . . . 5  |-  6  e.  NN
32 nndivre 10344 . . . . 5  |-  ( ( ( A ^ 2 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
2 )  /  6
)  e.  RR )
3312, 31, 32sylancl 655 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  6 )  e.  RR )
34 absrele 12780 . . . . 5  |-  ( sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC  ->  ( abs `  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
3523, 34syl 16 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
36 reexpcl 11865 . . . . . . 7  |-  ( ( A  e.  RR  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  RR )
375, 21, 36sylancl 655 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR )
38 nndivre 10344 . . . . . 6  |-  ( ( ( A ^ 4 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
4 )  /  6
)  e.  RR )
3937, 31, 38sylancl 655 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  e.  RR )
406ef01bndlem 13450 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 4 )  /  6 ) )
41 2nn0 10583 . . . . . . . 8  |-  2  e.  NN0
4241a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  2  e.  NN0 )
43 4nn 10468 . . . . . . . . . 10  |-  4  e.  NN
4443nnzi 10657 . . . . . . . . 9  |-  4  e.  ZZ
45 2re 10378 . . . . . . . . . 10  |-  2  e.  RR
46 4re 10385 . . . . . . . . . 10  |-  4  e.  RR
47 2lt4 10479 . . . . . . . . . 10  |-  2  <  4
4845, 46, 47ltleii 9484 . . . . . . . . 9  |-  2  <_  4
49 2z 10665 . . . . . . . . . 10  |-  2  e.  ZZ
5049eluz1i 10855 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  2
)  <->  ( 4  e.  ZZ  /\  2  <_ 
4 ) )
5144, 48, 50mpbir2an 904 . . . . . . . 8  |-  4  e.  ( ZZ>= `  2 )
5251a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  4  e.  ( ZZ>= `  2 )
)
534simp2bi 997 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
54 0re 9373 . . . . . . . . 9  |-  0  e.  RR
55 ltle 9450 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
5654, 5, 55sylancr 656 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
0  <  A  ->  0  <_  A ) )
5753, 56mpd 15 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <_  A )
584simp3bi 998 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
595, 42, 52, 57, 58leexp2rd 12024 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  <_ 
( A ^ 2 ) )
60 6re 10389 . . . . . . . 8  |-  6  e.  RR
6160a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  6  e.  RR )
62 6pos 10407 . . . . . . . 8  |-  0  <  6
6362a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  6 )
64 lediv1 10181 . . . . . . 7  |-  ( ( ( A ^ 4 )  e.  RR  /\  ( A ^ 2 )  e.  RR  /\  (
6  e.  RR  /\  0  <  6 ) )  ->  ( ( A ^ 4 )  <_ 
( A ^ 2 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 2 )  /  6 ) ) )
6537, 12, 61, 63, 64syl112anc 1215 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  <_  ( A ^ 2 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 2 )  /  6 ) ) )
6659, 65mpbid 210 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  <_  ( ( A ^ 2 )  / 
6 ) )
6730, 39, 33, 40, 66ltletrd 9518 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 2 )  /  6 ) )
6829, 30, 33, 35, 67lelttrd 9516 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <  ( ( A ^ 2 )  /  6 ) )
6928, 68eqbrtrd 4300 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( cos `  A )  -  (
1  -  ( ( A ^ 2 )  /  2 ) ) ) )  <  (
( A ^ 2 )  /  6 ) )
7010, 15, 33absdifltd 12903 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( cos `  A
)  -  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) ) )  <  ( ( A ^ 2 )  /  6 )  <->  ( (
( 1  -  (
( A ^ 2 )  /  2 ) )  -  ( ( A ^ 2 )  /  6 ) )  <  ( cos `  A
)  /\  ( cos `  A )  <  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( ( A ^ 2 )  /  6 ) ) ) ) )
71 1cnd 9389 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  1  e.  CC )
7213recnd 9399 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  2 )  e.  CC )
7333recnd 9399 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  6 )  e.  CC )
7471, 72, 73subsub4d 9737 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  -  ( ( A ^ 2 )  /  6 ) )  =  ( 1  -  ( ( ( A ^ 2 )  / 
2 )  +  ( ( A ^ 2 )  /  6 ) ) ) )
75 halfpm6th 10533 . . . . . . . . . . 11  |-  ( ( ( 1  /  2
)  -  ( 1  /  6 ) )  =  ( 1  / 
3 )  /\  (
( 1  /  2
)  +  ( 1  /  6 ) )  =  ( 2  / 
3 ) )
7675simpri 459 . . . . . . . . . 10  |-  ( ( 1  /  2 )  +  ( 1  / 
6 ) )  =  ( 2  /  3
)
7776oveq2i 6091 . . . . . . . . 9  |-  ( ( A ^ 2 )  x.  ( ( 1  /  2 )  +  ( 1  /  6
) ) )  =  ( ( A ^
2 )  x.  (
2  /  3 ) )
7812recnd 9399 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  CC )
79 2cn 10379 . . . . . . . . . . . 12  |-  2  e.  CC
80 2ne0 10401 . . . . . . . . . . . 12  |-  2  =/=  0
8179, 80reccli 10048 . . . . . . . . . . 11  |-  ( 1  /  2 )  e.  CC
82 6cn 10390 . . . . . . . . . . . 12  |-  6  e.  CC
8331nnne0i 10343 . . . . . . . . . . . 12  |-  6  =/=  0
8482, 83reccli 10048 . . . . . . . . . . 11  |-  ( 1  /  6 )  e.  CC
85 adddi 9358 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( 1  /  6
)  e.  CC )  ->  ( ( A ^ 2 )  x.  ( ( 1  / 
2 )  +  ( 1  /  6 ) ) )  =  ( ( ( A ^
2 )  x.  (
1  /  2 ) )  +  ( ( A ^ 2 )  x.  ( 1  / 
6 ) ) ) )
8681, 84, 85mp3an23 1299 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  x.  ( ( 1  /  2 )  +  ( 1  / 
6 ) ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  +  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
8778, 86syl 16 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( ( 1  /  2 )  +  ( 1  / 
6 ) ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  +  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
8877, 87syl5eqr 2479 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 2  /  3 ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  +  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
89 3cn 10383 . . . . . . . . . . 11  |-  3  e.  CC
90 3ne0 10403 . . . . . . . . . . 11  |-  3  =/=  0
9189, 90pm3.2i 452 . . . . . . . . . 10  |-  ( 3  e.  CC  /\  3  =/=  0 )
92 div12 10003 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  ( A ^ 2 )  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( 2  x.  ( ( A ^
2 )  /  3
) )  =  ( ( A ^ 2 )  x.  ( 2  /  3 ) ) )
9379, 91, 92mp3an13 1298 . . . . . . . . 9  |-  ( ( A ^ 2 )  e.  CC  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
9478, 93syl 16 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
95 divrec 9997 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( A ^ 2 )  /  2 )  =  ( ( A ^ 2 )  x.  ( 1  /  2
) ) )
9679, 80, 95mp3an23 1299 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  /  2 )  =  ( ( A ^ 2 )  x.  ( 1  /  2
) ) )
9778, 96syl 16 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  2 )  =  ( ( A ^ 2 )  x.  ( 1  /  2
) ) )
98 divrec 9997 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  CC  /\  6  e.  CC  /\  6  =/=  0 )  ->  (
( A ^ 2 )  /  6 )  =  ( ( A ^ 2 )  x.  ( 1  /  6
) ) )
9982, 83, 98mp3an23 1299 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  /  6 )  =  ( ( A ^ 2 )  x.  ( 1  /  6
) ) )
10078, 99syl 16 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  6 )  =  ( ( A ^ 2 )  x.  ( 1  /  6
) ) )
10197, 100oveq12d 6098 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
2 )  /  2
)  +  ( ( A ^ 2 )  /  6 ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  +  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
10288, 94, 1013eqtr4rd 2476 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
2 )  /  2
)  +  ( ( A ^ 2 )  /  6 ) )  =  ( 2  x.  ( ( A ^
2 )  /  3
) ) )
103102oveq2d 6096 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( ( A ^ 2 )  /  2 )  +  ( ( A ^ 2 )  / 
6 ) ) )  =  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) )
10474, 103eqtrd 2465 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  -  ( ( A ^ 2 )  /  6 ) )  =  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) )
105104breq1d 4290 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( 1  -  ( ( A ^
2 )  /  2
) )  -  (
( A ^ 2 )  /  6 ) )  <  ( cos `  A )  <->  ( 1  -  ( 2  x.  ( ( A ^
2 )  /  3
) ) )  < 
( cos `  A
) ) )
10671, 72, 73subsubd 9734 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( ( A ^ 2 )  /  2 )  -  ( ( A ^ 2 )  / 
6 ) ) )  =  ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
2 )  /  6
) ) )
10775simpli 455 . . . . . . . . . 10  |-  ( ( 1  /  2 )  -  ( 1  / 
6 ) )  =  ( 1  /  3
)
108107oveq2i 6091 . . . . . . . . 9  |-  ( ( A ^ 2 )  x.  ( ( 1  /  2 )  -  ( 1  /  6
) ) )  =  ( ( A ^
2 )  x.  (
1  /  3 ) )
109 subdi 9765 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( 1  /  6
)  e.  CC )  ->  ( ( A ^ 2 )  x.  ( ( 1  / 
2 )  -  (
1  /  6 ) ) )  =  ( ( ( A ^
2 )  x.  (
1  /  2 ) )  -  ( ( A ^ 2 )  x.  ( 1  / 
6 ) ) ) )
11081, 84, 109mp3an23 1299 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  x.  ( ( 1  /  2 )  -  ( 1  / 
6 ) ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  -  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
11178, 110syl 16 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( ( 1  /  2 )  -  ( 1  / 
6 ) ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  -  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
112108, 111syl5eqr 2479 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 1  /  3 ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  -  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
113 divrec 9997 . . . . . . . . . 10  |-  ( ( ( A ^ 2 )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( A ^ 2 )  /  3 )  =  ( ( A ^ 2 )  x.  ( 1  /  3
) ) )
11489, 90, 113mp3an23 1299 . . . . . . . . 9  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  /  3 )  =  ( ( A ^ 2 )  x.  ( 1  /  3
) ) )
11578, 114syl 16 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  3 )  =  ( ( A ^ 2 )  x.  ( 1  /  3
) ) )
11697, 100oveq12d 6098 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
2 )  /  2
)  -  ( ( A ^ 2 )  /  6 ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  -  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
117112, 115, 1163eqtr4rd 2476 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
2 )  /  2
)  -  ( ( A ^ 2 )  /  6 ) )  =  ( ( A ^ 2 )  / 
3 ) )
118117oveq2d 6096 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( ( A ^ 2 )  /  2 )  -  ( ( A ^ 2 )  / 
6 ) ) )  =  ( 1  -  ( ( A ^
2 )  /  3
) ) )
119106, 118eqtr3d 2467 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( ( A ^ 2 )  /  6 ) )  =  ( 1  -  ( ( A ^
2 )  /  3
) ) )
120119breq2d 4292 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( cos `  A
)  <  ( (
1  -  ( ( A ^ 2 )  /  2 ) )  +  ( ( A ^ 2 )  / 
6 ) )  <->  ( cos `  A )  <  (
1  -  ( ( A ^ 2 )  /  3 ) ) ) )
121105, 120anbi12d 703 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  -  ( ( A ^
2 )  /  6
) )  <  ( cos `  A )  /\  ( cos `  A )  <  ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
2 )  /  6
) ) )  <->  ( (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  <  ( cos `  A
)  /\  ( cos `  A )  <  (
1  -  ( ( A ^ 2 )  /  3 ) ) ) ) )
12270, 121bitrd 253 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( cos `  A
)  -  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) ) )  <  ( ( A ^ 2 )  /  6 )  <->  ( (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  <  ( cos `  A
)  /\  ( cos `  A )  <  (
1  -  ( ( A ^ 2 )  /  3 ) ) ) ) )
12369, 122mpbid 210 1  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  <  ( cos `  A )  /\  ( cos `  A )  < 
( 1  -  (
( A ^ 2 )  /  3 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755    =/= wne 2596   class class class wbr 4280    e. cmpt 4338   ` cfv 5406  (class class class)co 6080   CCcc 9267   RRcr 9268   0cc0 9269   1c1 9270   _ici 9271    + caddc 9272    x. cmul 9274   RR*cxr 9404    < clt 9405    <_ cle 9406    - cmin 9582    / cdiv 9980   NNcn 10309   2c2 10358   3c3 10359   4c4 10360   6c6 10362   NN0cn0 10566   ZZcz 10633   ZZ>=cuz 10848   (,]cioc 11288   ^cexp 11848   !cfa 12034   Recre 12569   abscabs 12706   sum_csu 13146   cosccos 13332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347  ax-addf 9348  ax-mulf 9349
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-4 10369  df-5 10370  df-6 10371  df-7 10372  df-8 10373  df-n0 10567  df-z 10634  df-uz 10849  df-rp 10979  df-ioc 11292  df-ico 11293  df-fz 11424  df-fzo 11532  df-fl 11625  df-seq 11790  df-exp 11849  df-fac 12035  df-hash 12087  df-shft 12539  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-limsup 12932  df-clim 12949  df-rlim 12950  df-sum 13147  df-ef 13335  df-cos 13338
This theorem is referenced by:  cos1bnd  13453  cos01gt0  13457  tangtx  21851
  Copyright terms: Public domain W3C validator