MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cores2 Structured version   Unicode version

Theorem cores2 5520
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
cores2  |-  ( dom 
A  C_  C  ->  ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  B ) )

Proof of Theorem cores2
StepHypRef Expression
1 dfdm4 5195 . . . . . 6  |-  dom  A  =  ran  `' A
21sseq1i 3528 . . . . 5  |-  ( dom 
A  C_  C  <->  ran  `' A  C_  C )
3 cores 5510 . . . . 5  |-  ( ran  `' A  C_  C  -> 
( ( `' B  |`  C )  o.  `' A )  =  ( `' B  o.  `' A ) )
42, 3sylbi 195 . . . 4  |-  ( dom 
A  C_  C  ->  ( ( `' B  |`  C )  o.  `' A )  =  ( `' B  o.  `' A ) )
5 cnvco 5188 . . . . 5  |-  `' ( A  o.  `' ( `' B  |`  C ) )  =  ( `' `' ( `' B  |`  C )  o.  `' A )
6 cocnvcnv1 5518 . . . . 5  |-  ( `' `' ( `' B  |`  C )  o.  `' A )  =  ( ( `' B  |`  C )  o.  `' A )
75, 6eqtri 2496 . . . 4  |-  `' ( A  o.  `' ( `' B  |`  C ) )  =  ( ( `' B  |`  C )  o.  `' A )
8 cnvco 5188 . . . 4  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
94, 7, 83eqtr4g 2533 . . 3  |-  ( dom 
A  C_  C  ->  `' ( A  o.  `' ( `' B  |`  C ) )  =  `' ( A  o.  B ) )
109cnveqd 5178 . 2  |-  ( dom 
A  C_  C  ->  `' `' ( A  o.  `' ( `' B  |`  C ) )  =  `' `' ( A  o.  B ) )
11 relco 5505 . . 3  |-  Rel  ( A  o.  `' ( `' B  |`  C ) )
12 dfrel2 5457 . . 3  |-  ( Rel  ( A  o.  `' ( `' B  |`  C ) )  <->  `' `' ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  `' ( `' B  |`  C ) ) )
1311, 12mpbi 208 . 2  |-  `' `' ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  `' ( `' B  |`  C )
)
14 relco 5505 . . 3  |-  Rel  ( A  o.  B )
15 dfrel2 5457 . . 3  |-  ( Rel  ( A  o.  B
)  <->  `' `' ( A  o.  B )  =  ( A  o.  B ) )
1614, 15mpbi 208 . 2  |-  `' `' ( A  o.  B
)  =  ( A  o.  B )
1710, 13, 163eqtr3g 2531 1  |-  ( dom 
A  C_  C  ->  ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    C_ wss 3476   `'ccnv 4998   dom cdm 4999   ran crn 5000    |` cres 5001    o. ccom 5003   Rel wrel 5004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011
This theorem is referenced by:  fcoi1  5759  ofco2  18748
  Copyright terms: Public domain W3C validator