MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsexg Structured version   Visualization version   Unicode version

Theorem copsexg 4704
Description: Substitution of class  A for ordered pair  <. x ,  y >.. (Contributed by NM, 27-Dec-1996.) (Revised by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 25-Aug-2019.)
Assertion
Ref Expression
copsexg  |-  ( A  =  <. x ,  y
>.  ->  ( ph  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ph ) ) )
Distinct variable groups:    x, A    y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem copsexg
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3060 . . . 4  |-  x  e. 
_V
2 vex 3060 . . . 4  |-  y  e. 
_V
31, 2eqvinop 4703 . . 3  |-  ( A  =  <. x ,  y
>. 
<->  E. z E. w
( A  =  <. z ,  w >.  /\  <. z ,  w >.  =  <. x ,  y >. )
)
4 19.8a 1946 . . . . . . . . 9  |-  ( E. y ( <. z ,  w >.  =  <. x ,  y >.  /\  ph )  ->  E. x E. y
( <. z ,  w >.  =  <. x ,  y
>.  /\  ph ) )
5419.23bi 1960 . . . . . . . 8  |-  ( (
<. z ,  w >.  = 
<. x ,  y >.  /\  ph )  ->  E. x E. y ( <. z ,  w >.  =  <. x ,  y >.  /\  ph ) )
65ex 440 . . . . . . 7  |-  ( <.
z ,  w >.  = 
<. x ,  y >.  ->  ( ph  ->  E. x E. y ( <. z ,  w >.  =  <. x ,  y >.  /\  ph ) ) )
7 vex 3060 . . . . . . . . 9  |-  z  e. 
_V
8 vex 3060 . . . . . . . . 9  |-  w  e. 
_V
97, 8opth 4693 . . . . . . . 8  |-  ( <.
z ,  w >.  = 
<. x ,  y >.  <->  ( z  =  x  /\  w  =  y )
)
109anbi1i 706 . . . . . . . . . 10  |-  ( (
<. z ,  w >.  = 
<. x ,  y >.  /\  ph )  <->  ( (
z  =  x  /\  w  =  y )  /\  ph ) )
11102exbii 1730 . . . . . . . . 9  |-  ( E. x E. y (
<. z ,  w >.  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ( ( z  =  x  /\  w  =  y )  /\  ph ) )
12 nfe1 1929 . . . . . . . . . . 11  |-  F/ x E. x ( z  =  x  /\  E. y
( w  =  y  /\  ph ) )
13 19.8a 1946 . . . . . . . . . . . . . . . 16  |-  ( ( w  =  y  /\  ph )  ->  E. y
( w  =  y  /\  ph ) )
1413anim2i 577 . . . . . . . . . . . . . . 15  |-  ( ( z  =  x  /\  ( w  =  y  /\  ph ) )  -> 
( z  =  x  /\  E. y ( w  =  y  /\  ph ) ) )
1514anassrs 658 . . . . . . . . . . . . . 14  |-  ( ( ( z  =  x  /\  w  =  y )  /\  ph )  ->  ( z  =  x  /\  E. y ( w  =  y  /\  ph ) ) )
1615eximi 1718 . . . . . . . . . . . . 13  |-  ( E. y ( ( z  =  x  /\  w  =  y )  /\  ph )  ->  E. y
( z  =  x  /\  E. y ( w  =  y  /\  ph ) ) )
17 biidd 245 . . . . . . . . . . . . . 14  |-  ( A. y  y  =  x  ->  ( ( z  =  x  /\  E. y
( w  =  y  /\  ph ) )  <-> 
( z  =  x  /\  E. y ( w  =  y  /\  ph ) ) ) )
1817drex1 2172 . . . . . . . . . . . . 13  |-  ( A. y  y  =  x  ->  ( E. y ( z  =  x  /\  E. y ( w  =  y  /\  ph )
)  <->  E. x ( z  =  x  /\  E. y ( w  =  y  /\  ph )
) ) )
1916, 18syl5ib 227 . . . . . . . . . . . 12  |-  ( A. y  y  =  x  ->  ( E. y ( ( z  =  x  /\  w  =  y )  /\  ph )  ->  E. x ( z  =  x  /\  E. y ( w  =  y  /\  ph )
) ) )
20 anass 659 . . . . . . . . . . . . . . 15  |-  ( ( ( z  =  x  /\  w  =  y )  /\  ph )  <->  ( z  =  x  /\  ( w  =  y  /\  ph ) ) )
2120exbii 1729 . . . . . . . . . . . . . 14  |-  ( E. y ( ( z  =  x  /\  w  =  y )  /\  ph )  <->  E. y ( z  =  x  /\  (
w  =  y  /\  ph ) ) )
22 19.40 1742 . . . . . . . . . . . . . . 15  |-  ( E. y ( z  =  x  /\  ( w  =  y  /\  ph ) )  ->  ( E. y  z  =  x  /\  E. y ( w  =  y  /\  ph ) ) )
23 nfeqf2 2146 . . . . . . . . . . . . . . . . 17  |-  ( -. 
A. y  y  =  x  ->  F/ y 
z  =  x )
242319.9d 1979 . . . . . . . . . . . . . . . 16  |-  ( -. 
A. y  y  =  x  ->  ( E. y  z  =  x  ->  z  =  x ) )
2524anim1d 572 . . . . . . . . . . . . . . 15  |-  ( -. 
A. y  y  =  x  ->  ( ( E. y  z  =  x  /\  E. y ( w  =  y  /\  ph ) )  ->  (
z  =  x  /\  E. y ( w  =  y  /\  ph )
) ) )
2622, 25syl5 33 . . . . . . . . . . . . . 14  |-  ( -. 
A. y  y  =  x  ->  ( E. y ( z  =  x  /\  ( w  =  y  /\  ph ) )  ->  (
z  =  x  /\  E. y ( w  =  y  /\  ph )
) ) )
2721, 26syl5bi 225 . . . . . . . . . . . . 13  |-  ( -. 
A. y  y  =  x  ->  ( E. y ( ( z  =  x  /\  w  =  y )  /\  ph )  ->  ( z  =  x  /\  E. y
( w  =  y  /\  ph ) ) ) )
28 19.8a 1946 . . . . . . . . . . . . 13  |-  ( ( z  =  x  /\  E. y ( w  =  y  /\  ph )
)  ->  E. x
( z  =  x  /\  E. y ( w  =  y  /\  ph ) ) )
2927, 28syl6 34 . . . . . . . . . . . 12  |-  ( -. 
A. y  y  =  x  ->  ( E. y ( ( z  =  x  /\  w  =  y )  /\  ph )  ->  E. x
( z  =  x  /\  E. y ( w  =  y  /\  ph ) ) ) )
3019, 29pm2.61i 169 . . . . . . . . . . 11  |-  ( E. y ( ( z  =  x  /\  w  =  y )  /\  ph )  ->  E. x
( z  =  x  /\  E. y ( w  =  y  /\  ph ) ) )
3112, 30exlimi 2006 . . . . . . . . . 10  |-  ( E. x E. y ( ( z  =  x  /\  w  =  y )  /\  ph )  ->  E. x ( z  =  x  /\  E. y ( w  =  y  /\  ph )
) )
32 euequ1 2316 . . . . . . . . . . . . . 14  |-  E! x  x  =  z
33 equcom 1873 . . . . . . . . . . . . . . 15  |-  ( x  =  z  <->  z  =  x )
3433eubii 2332 . . . . . . . . . . . . . 14  |-  ( E! x  x  =  z  <-> 
E! x  z  =  x )
3532, 34mpbi 213 . . . . . . . . . . . . 13  |-  E! x  z  =  x
36 eupick 2376 . . . . . . . . . . . . 13  |-  ( ( E! x  z  =  x  /\  E. x
( z  =  x  /\  E. y ( w  =  y  /\  ph ) ) )  -> 
( z  =  x  ->  E. y ( w  =  y  /\  ph ) ) )
3735, 36mpan 681 . . . . . . . . . . . 12  |-  ( E. x ( z  =  x  /\  E. y
( w  =  y  /\  ph ) )  ->  ( z  =  x  ->  E. y
( w  =  y  /\  ph ) ) )
3837com12 32 . . . . . . . . . . 11  |-  ( z  =  x  ->  ( E. x ( z  =  x  /\  E. y
( w  =  y  /\  ph ) )  ->  E. y ( w  =  y  /\  ph ) ) )
39 euequ1 2316 . . . . . . . . . . . . . 14  |-  E! y  y  =  w
40 equcom 1873 . . . . . . . . . . . . . . 15  |-  ( y  =  w  <->  w  =  y )
4140eubii 2332 . . . . . . . . . . . . . 14  |-  ( E! y  y  =  w  <-> 
E! y  w  =  y )
4239, 41mpbi 213 . . . . . . . . . . . . 13  |-  E! y  w  =  y
43 eupick 2376 . . . . . . . . . . . . 13  |-  ( ( E! y  w  =  y  /\  E. y
( w  =  y  /\  ph ) )  ->  ( w  =  y  ->  ph ) )
4442, 43mpan 681 . . . . . . . . . . . 12  |-  ( E. y ( w  =  y  /\  ph )  ->  ( w  =  y  ->  ph ) )
4544com12 32 . . . . . . . . . . 11  |-  ( w  =  y  ->  ( E. y ( w  =  y  /\  ph )  ->  ph ) )
4638, 45sylan9 667 . . . . . . . . . 10  |-  ( ( z  =  x  /\  w  =  y )  ->  ( E. x ( z  =  x  /\  E. y ( w  =  y  /\  ph )
)  ->  ph ) )
4731, 46syl5 33 . . . . . . . . 9  |-  ( ( z  =  x  /\  w  =  y )  ->  ( E. x E. y ( ( z  =  x  /\  w  =  y )  /\  ph )  ->  ph ) )
4811, 47syl5bi 225 . . . . . . . 8  |-  ( ( z  =  x  /\  w  =  y )  ->  ( E. x E. y ( <. z ,  w >.  =  <. x ,  y >.  /\  ph )  ->  ph ) )
499, 48sylbi 200 . . . . . . 7  |-  ( <.
z ,  w >.  = 
<. x ,  y >.  ->  ( E. x E. y ( <. z ,  w >.  =  <. x ,  y >.  /\  ph )  ->  ph ) )
506, 49impbid 195 . . . . . 6  |-  ( <.
z ,  w >.  = 
<. x ,  y >.  ->  ( ph  <->  E. x E. y ( <. z ,  w >.  =  <. x ,  y >.  /\  ph ) ) )
51 eqeq1 2466 . . . . . . 7  |-  ( A  =  <. z ,  w >.  ->  ( A  = 
<. x ,  y >.  <->  <.
z ,  w >.  = 
<. x ,  y >.
) )
5251anbi1d 716 . . . . . . . . 9  |-  ( A  =  <. z ,  w >.  ->  ( ( A  =  <. x ,  y
>.  /\  ph )  <->  ( <. z ,  w >.  =  <. x ,  y >.  /\  ph ) ) )
53522exbidv 1781 . . . . . . . 8  |-  ( A  =  <. z ,  w >.  ->  ( E. x E. y ( A  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ( <. z ,  w >.  =  <. x ,  y >.  /\  ph ) ) )
5453bibi2d 324 . . . . . . 7  |-  ( A  =  <. z ,  w >.  ->  ( ( ph  <->  E. x E. y ( A  =  <. x ,  y >.  /\  ph ) )  <->  ( ph  <->  E. x E. y (
<. z ,  w >.  = 
<. x ,  y >.  /\  ph ) ) ) )
5551, 54imbi12d 326 . . . . . 6  |-  ( A  =  <. z ,  w >.  ->  ( ( A  =  <. x ,  y
>.  ->  ( ph  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ph ) ) )  <-> 
( <. z ,  w >.  =  <. x ,  y
>.  ->  ( ph  <->  E. x E. y ( <. z ,  w >.  =  <. x ,  y >.  /\  ph ) ) ) ) )
5650, 55mpbiri 241 . . . . 5  |-  ( A  =  <. z ,  w >.  ->  ( A  = 
<. x ,  y >.  ->  ( ph  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ph ) ) ) )
5756adantr 471 . . . 4  |-  ( ( A  =  <. z ,  w >.  /\  <. z ,  w >.  =  <. x ,  y >. )  ->  ( A  =  <. x ,  y >.  ->  ( ph 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) ) ) )
5857exlimivv 1789 . . 3  |-  ( E. z E. w ( A  =  <. z ,  w >.  /\  <. z ,  w >.  =  <. x ,  y >. )  ->  ( A  =  <. x ,  y >.  ->  ( ph 
<->  E. x E. y
( A  =  <. x ,  y >.  /\  ph ) ) ) )
593, 58sylbi 200 . 2  |-  ( A  =  <. x ,  y
>.  ->  ( A  = 
<. x ,  y >.  ->  ( ph  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ph ) ) ) )
6059pm2.43i 49 1  |-  ( A  =  <. x ,  y
>.  ->  ( ph  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375   A.wal 1453    = wceq 1455   E.wex 1674   E!weu 2310   <.cop 3986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pr 4656
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-rab 2758  df-v 3059  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-op 3987
This theorem is referenced by:  copsex2t  4705  copsex2g  4706  mosubopt  4716  opabid  4725  brabgaf  28269
  Copyright terms: Public domain W3C validator