MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsex4g Structured version   Visualization version   Unicode version

Theorem copsex4g 4690
Description: An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995.)
Hypothesis
Ref Expression
copsex4g.1  |-  ( ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D ) )  -> 
( ph  <->  ps ) )
Assertion
Ref Expression
copsex4g  |-  ( ( ( A  e.  R  /\  B  e.  S
)  /\  ( C  e.  R  /\  D  e.  S ) )  -> 
( E. x E. y E. z E. w
( ( <. A ,  B >.  =  <. x ,  y >.  /\  <. C ,  D >.  =  <. z ,  w >. )  /\  ph )  <->  ps )
)
Distinct variable groups:    x, y,
z, w, A    x, B, y, z, w    x, C, y, z, w    x, D, y, z, w    ps, x, y, z, w    x, R, y, z, w    x, S, y, z, w
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem copsex4g
StepHypRef Expression
1 eqcom 2478 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. x ,  y >.  <->  <.
x ,  y >.  =  <. A ,  B >. )
2 vex 3034 . . . . . . . 8  |-  x  e. 
_V
3 vex 3034 . . . . . . . 8  |-  y  e. 
_V
42, 3opth 4676 . . . . . . 7  |-  ( <.
x ,  y >.  =  <. A ,  B >.  <-> 
( x  =  A  /\  y  =  B ) )
51, 4bitri 257 . . . . . 6  |-  ( <. A ,  B >.  = 
<. x ,  y >.  <->  ( x  =  A  /\  y  =  B )
)
6 eqcom 2478 . . . . . . 7  |-  ( <. C ,  D >.  = 
<. z ,  w >.  <->  <. z ,  w >.  =  <. C ,  D >. )
7 vex 3034 . . . . . . . 8  |-  z  e. 
_V
8 vex 3034 . . . . . . . 8  |-  w  e. 
_V
97, 8opth 4676 . . . . . . 7  |-  ( <.
z ,  w >.  = 
<. C ,  D >.  <->  (
z  =  C  /\  w  =  D )
)
106, 9bitri 257 . . . . . 6  |-  ( <. C ,  D >.  = 
<. z ,  w >.  <->  (
z  =  C  /\  w  =  D )
)
115, 10anbi12i 711 . . . . 5  |-  ( (
<. A ,  B >.  = 
<. x ,  y >.  /\  <. C ,  D >.  =  <. z ,  w >. )  <->  ( ( x  =  A  /\  y  =  B )  /\  (
z  =  C  /\  w  =  D )
) )
1211anbi1i 709 . . . 4  |-  ( ( ( <. A ,  B >.  =  <. x ,  y
>.  /\  <. C ,  D >.  =  <. z ,  w >. )  /\  ph )  <->  ( ( ( x  =  A  /\  y  =  B )  /\  (
z  =  C  /\  w  =  D )
)  /\  ph ) )
1312a1i 11 . . 3  |-  ( ( ( A  e.  R  /\  B  e.  S
)  /\  ( C  e.  R  /\  D  e.  S ) )  -> 
( ( ( <. A ,  B >.  = 
<. x ,  y >.  /\  <. C ,  D >.  =  <. z ,  w >. )  /\  ph )  <->  ( ( ( x  =  A  /\  y  =  B )  /\  (
z  =  C  /\  w  =  D )
)  /\  ph ) ) )
14134exbidv 1780 . 2  |-  ( ( ( A  e.  R  /\  B  e.  S
)  /\  ( C  e.  R  /\  D  e.  S ) )  -> 
( E. x E. y E. z E. w
( ( <. A ,  B >.  =  <. x ,  y >.  /\  <. C ,  D >.  =  <. z ,  w >. )  /\  ph )  <->  E. x E. y E. z E. w ( ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D ) )  /\  ph ) ) )
15 id 22 . . 3  |-  ( ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D ) )  -> 
( ( x  =  A  /\  y  =  B )  /\  (
z  =  C  /\  w  =  D )
) )
16 copsex4g.1 . . 3  |-  ( ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D ) )  -> 
( ph  <->  ps ) )
1715, 16cgsex4g 3068 . 2  |-  ( ( ( A  e.  R  /\  B  e.  S
)  /\  ( C  e.  R  /\  D  e.  S ) )  -> 
( E. x E. y E. z E. w
( ( ( x  =  A  /\  y  =  B )  /\  (
z  =  C  /\  w  =  D )
)  /\  ph )  <->  ps )
)
1814, 17bitrd 261 1  |-  ( ( ( A  e.  R  /\  B  e.  S
)  /\  ( C  e.  R  /\  D  e.  S ) )  -> 
( E. x E. y E. z E. w
( ( <. A ,  B >.  =  <. x ,  y >.  /\  <. C ,  D >.  =  <. z ,  w >. )  /\  ph )  <->  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   <.cop 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966
This theorem is referenced by:  opbrop  4919  ov3  6452
  Copyright terms: Public domain W3C validator