MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsex2g Structured version   Unicode version

Theorem copsex2g 4724
Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.)
Hypothesis
Ref Expression
copsex2g.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
copsex2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
Distinct variable groups:    x, y, ps    x, A, y    x, B, y
Allowed substitution hints:    ph( x, y)    V( x, y)    W( x, y)

Proof of Theorem copsex2g
StepHypRef Expression
1 elisset 3117 . 2  |-  ( A  e.  V  ->  E. x  x  =  A )
2 elisset 3117 . 2  |-  ( B  e.  W  ->  E. y 
y  =  B )
3 eeanv 1993 . . 3  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  <->  ( E. x  x  =  A  /\  E. y 
y  =  B ) )
4 nfe1 1845 . . . . 5  |-  F/ x E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )
5 nfv 1712 . . . . 5  |-  F/ x ps
64, 5nfbi 1939 . . . 4  |-  F/ x
( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps )
7 nfe1 1845 . . . . . . 7  |-  F/ y E. y ( <. A ,  B >.  = 
<. x ,  y >.  /\  ph )
87nfex 1953 . . . . . 6  |-  F/ y E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  ph )
9 nfv 1712 . . . . . 6  |-  F/ y ps
108, 9nfbi 1939 . . . . 5  |-  F/ y ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps )
11 opeq12 4205 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  -> 
<. x ,  y >.  =  <. A ,  B >. )
12 copsexg 4722 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. x ,  y >.  ->  ( ph  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) ) )
1312eqcoms 2466 . . . . . . 7  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  ( ph  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) ) )
1411, 13syl 16 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) ) )
15 copsex2g.1 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
1614, 15bitr3d 255 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
1710, 16exlimi 1917 . . . 4  |-  ( E. y ( x  =  A  /\  y  =  B )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ps )
)
186, 17exlimi 1917 . . 3  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
193, 18sylbir 213 . 2  |-  ( ( E. x  x  =  A  /\  E. y 
y  =  B )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
201, 2, 19syl2an 475 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   <.cop 4022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023
This theorem is referenced by:  opelopabga  4749  ov6g  6413  ltresr  9506
  Copyright terms: Public domain W3C validator