MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprm Structured version   Unicode version

Theorem coprm 14223
Description: A prime number either divides an integer or is coprime to it, but not both. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
coprm  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )

Proof of Theorem coprm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prmz 14203 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2 gcddvds 14135 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( P  gcd  N )  ||  P  /\  ( P  gcd  N ) 
||  N ) )
31, 2sylan 471 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  ||  P  /\  ( P  gcd  N ) 
||  N ) )
43simprd 463 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  ||  N )
5 breq1 4440 . . . . 5  |-  ( ( P  gcd  N )  =  P  ->  (
( P  gcd  N
)  ||  N  <->  P  ||  N
) )
64, 5syl5ibcom 220 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  P  ->  P  ||  N ) )
76con3d 133 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  ->  -.  ( P  gcd  N
)  =  P ) )
8 0nnn 10574 . . . . . . . . 9  |-  -.  0  e.  NN
9 prmnn 14202 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
10 eleq1 2515 . . . . . . . . . 10  |-  ( P  =  0  ->  ( P  e.  NN  <->  0  e.  NN ) )
119, 10syl5ibcom 220 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P  =  0  ->  0  e.  NN ) )
128, 11mtoi 178 . . . . . . . 8  |-  ( P  e.  Prime  ->  -.  P  =  0 )
1312intnanrd 917 . . . . . . 7  |-  ( P  e.  Prime  ->  -.  ( P  =  0  /\  N  =  0 ) )
1413adantr 465 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  -.  ( P  =  0  /\  N  =  0
) )
15 gcdn0cl 14134 . . . . . . . 8  |-  ( ( ( P  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( P  =  0  /\  N  =  0 ) )  ->  ( P  gcd  N )  e.  NN )
1615ex 434 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  -> 
( P  gcd  N
)  e.  NN ) )
171, 16sylan 471 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( P  gcd  N )  e.  NN ) )
1814, 17mpd 15 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  e.  NN )
193simpld 459 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  ||  P )
20 isprm2 14207 . . . . . . . 8  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2120simprbi 464 . . . . . . 7  |-  ( P  e.  Prime  ->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
22 breq1 4440 . . . . . . . . 9  |-  ( z  =  ( P  gcd  N )  ->  ( z  ||  P  <->  ( P  gcd  N )  ||  P ) )
23 eqeq1 2447 . . . . . . . . . 10  |-  ( z  =  ( P  gcd  N )  ->  ( z  =  1  <->  ( P  gcd  N )  =  1 ) )
24 eqeq1 2447 . . . . . . . . . 10  |-  ( z  =  ( P  gcd  N )  ->  ( z  =  P  <->  ( P  gcd  N )  =  P ) )
2523, 24orbi12d 709 . . . . . . . . 9  |-  ( z  =  ( P  gcd  N )  ->  ( (
z  =  1  \/  z  =  P )  <-> 
( ( P  gcd  N )  =  1  \/  ( P  gcd  N
)  =  P ) ) )
2622, 25imbi12d 320 . . . . . . . 8  |-  ( z  =  ( P  gcd  N )  ->  ( (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  ( ( P  gcd  N )  ||  P  ->  ( ( P  gcd  N )  =  1  \/  ( P  gcd  N )  =  P ) ) ) )
2726rspcv 3192 . . . . . . 7  |-  ( ( P  gcd  N )  e.  NN  ->  ( A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  ->  (
( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
2821, 27syl5com 30 . . . . . 6  |-  ( P  e.  Prime  ->  ( ( P  gcd  N )  e.  NN  ->  (
( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
2928adantr 465 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  e.  NN  ->  ( ( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
3018, 19, 29mp2d 45 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) )
31 biorf 405 . . . . 5  |-  ( -.  ( P  gcd  N
)  =  P  -> 
( ( P  gcd  N )  =  1  <->  (
( P  gcd  N
)  =  P  \/  ( P  gcd  N )  =  1 ) ) )
32 orcom 387 . . . . 5  |-  ( ( ( P  gcd  N
)  =  P  \/  ( P  gcd  N )  =  1 )  <->  ( ( P  gcd  N )  =  1  \/  ( P  gcd  N )  =  P ) )
3331, 32syl6bb 261 . . . 4  |-  ( -.  ( P  gcd  N
)  =  P  -> 
( ( P  gcd  N )  =  1  <->  (
( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) )
3430, 33syl5ibrcom 222 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  gcd  N
)  =  P  -> 
( P  gcd  N
)  =  1 ) )
357, 34syld 44 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  -> 
( P  gcd  N
)  =  1 ) )
36 iddvds 13979 . . . . . . 7  |-  ( P  e.  ZZ  ->  P  ||  P )
371, 36syl 16 . . . . . 6  |-  ( P  e.  Prime  ->  P  ||  P )
3837adantr 465 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  P  ||  P )
39 dvdslegcd 14136 . . . . . . . . 9  |-  ( ( ( P  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( P  =  0  /\  N  =  0 ) )  -> 
( ( P  ||  P  /\  P  ||  N
)  ->  P  <_  ( P  gcd  N ) ) )
4039ex 434 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( ( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N
) ) ) )
41403anidm12 1286 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  -> 
( ( P  ||  P  /\  P  ||  N
)  ->  P  <_  ( P  gcd  N ) ) ) )
421, 41sylan 471 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( ( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N
) ) ) )
4314, 42mpd 15 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N ) ) )
4438, 43mpand 675 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  ||  N  ->  P  <_  ( P  gcd  N
) ) )
45 prmgt1 14218 . . . . . 6  |-  ( P  e.  Prime  ->  1  < 
P )
4645adantr 465 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  1  <  P )
471zred 10976 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  RR )
4847adantr 465 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  P  e.  RR )
4918nnred 10558 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  e.  RR )
50 1re 9598 . . . . . . 7  |-  1  e.  RR
51 ltletr 9679 . . . . . . 7  |-  ( ( 1  e.  RR  /\  P  e.  RR  /\  ( P  gcd  N )  e.  RR )  ->  (
( 1  <  P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5250, 51mp3an1 1312 . . . . . 6  |-  ( ( P  e.  RR  /\  ( P  gcd  N )  e.  RR )  -> 
( ( 1  < 
P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5348, 49, 52syl2anc 661 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( 1  <  P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5446, 53mpand 675 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  <_  ( P  gcd  N )  ->  1  <  ( P  gcd  N ) ) )
55 ltneOLD 9685 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( P  gcd  N )  e.  RR  /\  1  <  ( P  gcd  N
) )  ->  ( P  gcd  N )  =/=  1 )
56553expia 1199 . . . . 5  |-  ( ( 1  e.  RR  /\  ( P  gcd  N )  e.  RR )  -> 
( 1  <  ( P  gcd  N )  -> 
( P  gcd  N
)  =/=  1 ) )
5750, 49, 56sylancr 663 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
1  <  ( P  gcd  N )  ->  ( P  gcd  N )  =/=  1 ) )
5844, 54, 573syld 55 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  ||  N  ->  ( P  gcd  N )  =/=  1 ) )
5958necon2bd 2658 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  1  ->  -.  P  ||  N ) )
6035, 59impbid 191 1  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   class class class wbr 4437   ` cfv 5578  (class class class)co 6281   RRcr 9494   0cc0 9495   1c1 9496    < clt 9631    <_ cle 9632   NNcn 10543   2c2 10592   ZZcz 10871   ZZ>=cuz 11092    || cdvds 13968    gcd cgcd 14126   Primecprime 14199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-n0 10803  df-z 10872  df-uz 11093  df-rp 11232  df-seq 12090  df-exp 12149  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-dvds 13969  df-gcd 14127  df-prm 14200
This theorem is referenced by:  prmrp  14224  euclemma  14231  phiprmpw  14288  fermltl  14296  prmdiv  14297  prmdiveq  14298  prmpwdvds  14404  1259lem5  14599  2503lem3  14603  4001lem4  14608  gexexlem  16837  ablfac1lem  17098  ablfac1eu  17103  pgpfac1lem3  17107  perfect1  23481  perfectlem1  23482  perfectlem2  23483  lgslem1  23549  lgsqrlem2  23595  lgsqr  23599  lgsquad2lem2  23612  2sqblem  23630  rpvmasumlem  23650  dchrisum0flblem2  23672  nn0prpwlem  30116
  Copyright terms: Public domain W3C validator