MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprimeprodsq Unicode version

Theorem coprimeprodsq 12736
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of  gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
coprimeprodsq  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  ->  A  =  ( ( A  gcd  C
) ^ 2 ) ) )

Proof of Theorem coprimeprodsq
StepHypRef Expression
1 nn0z 9925 . . . . . . . 8  |-  ( A  e.  NN0  ->  A  e.  ZZ )
2 nn0z 9925 . . . . . . . 8  |-  ( C  e.  NN0  ->  C  e.  ZZ )
3 gcdcl 12570 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  gcd  C
)  e.  NN0 )
41, 2, 3syl2an 465 . . . . . . 7  |-  ( ( A  e.  NN0  /\  C  e.  NN0 )  -> 
( A  gcd  C
)  e.  NN0 )
543adant2 979 . . . . . 6  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( A  gcd  C )  e. 
NN0 )
653ad2ant1 981 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e. 
NN0 )
76nn0cnd 9899 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e.  CC )
87sqvald 11120 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  gcd  C
) ^ 2 )  =  ( ( A  gcd  C )  x.  ( A  gcd  C
) ) )
9 simp13 992 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  NN0 )
109nn0cnd 9899 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  CC )
11 nn0cn 9854 . . . . . . . . . 10  |-  ( A  e.  NN0  ->  A  e.  CC )
12113ad2ant1 981 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  A  e.  CC )
13123ad2ant1 981 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  CC )
1410, 13mulcomd 8736 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  A )  =  ( A  x.  C ) )
15 simpl3 965 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  ->  C  e.  NN0 )
1615nn0cnd 9899 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  ->  C  e.  CC )
1716sqvald 11120 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( C ^ 2 )  =  ( C  x.  C ) )
1817eqeq1d 2261 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  <-> 
( C  x.  C
)  =  ( A  x.  B ) ) )
1918biimp3a 1286 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  C )  =  ( A  x.  B ) )
2014, 19oveq12d 5728 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( ( A  x.  C )  gcd  ( A  x.  B )
) )
21 simp11 990 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  NN0 )
2221nn0zd 9994 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  e.  ZZ )
239nn0zd 9994 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  C  e.  ZZ )
24 mulgcd 12599 . . . . . . 7  |-  ( ( C  e.  NN0  /\  A  e.  ZZ  /\  C  e.  ZZ )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( C  x.  ( A  gcd  C ) ) )
259, 22, 23, 24syl3anc 1187 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( C  x.  A
)  gcd  ( C  x.  C ) )  =  ( C  x.  ( A  gcd  C ) ) )
26 simp12 991 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  B  e.  ZZ )
27 mulgcd 12599 . . . . . . 7  |-  ( ( A  e.  NN0  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  x.  C
)  gcd  ( A  x.  B ) )  =  ( A  x.  ( C  gcd  B ) ) )
2821, 23, 26, 27syl3anc 1187 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  C
)  gcd  ( A  x.  B ) )  =  ( A  x.  ( C  gcd  B ) ) )
2920, 25, 283eqtr3d 2293 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  x.  ( A  gcd  C ) )  =  ( A  x.  ( C  gcd  B ) ) )
3029oveq2d 5726 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) ) )
31 mulgcdr 12601 . . . . 5  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  ( A  gcd  C )  e. 
NN0 )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  gcd  C
)  x.  ( A  gcd  C ) ) )
3222, 23, 6, 31syl3anc 1187 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( C  x.  ( A  gcd  C ) ) )  =  ( ( A  gcd  C
)  x.  ( A  gcd  C ) ) )
336nn0zd 9994 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  gcd  C )  e.  ZZ )
34 gcdcl 12570 . . . . . . . . . 10  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  gcd  B
)  e.  NN0 )
352, 34sylan 459 . . . . . . . . 9  |-  ( ( C  e.  NN0  /\  B  e.  ZZ )  ->  ( C  gcd  B
)  e.  NN0 )
3635ancoms 441 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  C  e.  NN0 )  -> 
( C  gcd  B
)  e.  NN0 )
37363adant1 978 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  e. 
NN0 )
38373ad2ant1 981 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  gcd  B )  e. 
NN0 )
3938nn0zd 9994 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( C  gcd  B )  e.  ZZ )
40 mulgcd 12599 . . . . 5  |-  ( ( A  e.  NN0  /\  ( A  gcd  C )  e.  ZZ  /\  ( C  gcd  B )  e.  ZZ )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4121, 33, 39, 40syl3anc 1187 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  x.  ( A  gcd  C ) )  gcd  ( A  x.  ( C  gcd  B ) ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4230, 32, 413eqtr3d 2293 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  (
( A  gcd  C
)  x.  ( A  gcd  C ) )  =  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B ) ) ) )
4323ad2ant3 983 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  C  e.  ZZ )
44 gcdid 12584 . . . . . . . . . . . . . 14  |-  ( C  e.  ZZ  ->  ( C  gcd  C )  =  ( abs `  C
) )
4543, 44syl 17 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  C )  =  ( abs `  C
) )
4645oveq1d 5725 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( ( abs `  C )  gcd  B
) )
47 simp2 961 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  B  e.  ZZ )
48 gcdabs1 12587 . . . . . . . . . . . . 13  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( abs `  C
)  gcd  B )  =  ( C  gcd  B ) )
4943, 47, 48syl2anc 645 . . . . . . . . . . . 12  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( abs `  C
)  gcd  B )  =  ( C  gcd  B ) )
5046, 49eqtrd 2285 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  B ) )
51 gcdass 12598 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  C  e.  ZZ  /\  B  e.  ZZ )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  ( C  gcd  B ) ) )
5243, 43, 47, 51syl3anc 1187 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( C  gcd  C
)  gcd  B )  =  ( C  gcd  ( C  gcd  B ) ) )
53 gcdcom 12573 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  gcd  B
)  =  ( B  gcd  C ) )
5443, 47, 53syl2anc 645 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  =  ( B  gcd  C
) )
5550, 52, 543eqtr3d 2293 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  ( C  gcd  B ) )  =  ( B  gcd  C ) )
5655oveq2d 5726 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) )  =  ( A  gcd  ( B  gcd  C ) ) )
5713ad2ant1 981 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  A  e.  ZZ )
5837nn0zd 9994 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( C  gcd  B )  e.  ZZ )
59 gcdass 12598 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  ( C  gcd  B )  e.  ZZ )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) ) )
6057, 43, 58, 59syl3anc 1187 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( A  gcd  ( C  gcd  ( C  gcd  B ) ) ) )
61 gcdass 12598 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( A  gcd  B
)  gcd  C )  =  ( A  gcd  ( B  gcd  C ) ) )
6257, 47, 43, 61syl3anc 1187 . . . . . . . . 9  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  B
)  gcd  C )  =  ( A  gcd  ( B  gcd  C ) ) )
6356, 60, 623eqtr4d 2295 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( A  gcd  C
)  gcd  ( C  gcd  B ) )  =  ( ( A  gcd  B )  gcd  C ) )
6463eqeq1d 2261 . . . . . . 7  |-  ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  (
( ( A  gcd  C )  gcd  ( C  gcd  B ) )  =  1  <->  ( ( A  gcd  B )  gcd 
C )  =  1 ) )
6564biimpar 473 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( A  gcd  C )  gcd  ( C  gcd  B ) )  =  1 )
6665oveq2d 5726 . . . . 5  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( A  x.  (
( A  gcd  C
)  gcd  ( C  gcd  B ) ) )  =  ( A  x.  1 ) )
67663adant3 980 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B
) ) )  =  ( A  x.  1 ) )
6813mulid1d 8732 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  1 )  =  A )
6967, 68eqtrd 2285 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  ( A  x.  ( ( A  gcd  C )  gcd  ( C  gcd  B
) ) )  =  A )
708, 42, 693eqtrrd 2290 . 2  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1  /\  ( C ^ 2 )  =  ( A  x.  B
) )  ->  A  =  ( ( A  gcd  C ) ^
2 ) )
71703expia 1158 1  |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A  gcd  B )  gcd  C )  =  1 )  -> 
( ( C ^
2 )  =  ( A  x.  B )  ->  A  =  ( ( A  gcd  C
) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   ` cfv 4592  (class class class)co 5710   CCcc 8615   1c1 8618    x. cmul 8622   2c2 9675   NN0cn0 9844   ZZcz 9903   ^cexp 10982   abscabs 11596    gcd cgcd 12559
This theorem is referenced by:  coprimeprodsq2  12737  pythagtriplem6  12748
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-divides 12406  df-gcd 12560
  Copyright terms: Public domain W3C validator