MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  consuba Structured version   Unicode version

Theorem consuba 19899
Description: Connectedness for a subspace. See connsub 19900. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
consuba  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( Jt  A )  e.  Con  <->  A. x  e.  J  A. y  e.  J  (
( ( x  i^i 
A )  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
Distinct variable groups:    x, y, A    x, J, y    x, X, y

Proof of Theorem consuba
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resttopon 19640 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
2 dfcon2 19898 . . 3  |-  ( ( Jt  A )  e.  (TopOn `  A )  ->  (
( Jt  A )  e.  Con  <->  A. u  e.  ( Jt  A
) A. v  e.  ( Jt  A ) ( ( u  =/=  (/)  /\  v  =/=  (/)  /\  ( u  i^i  v )  =  (/) )  ->  ( u  u.  v )  =/= 
A ) ) )
31, 2syl 16 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( Jt  A )  e.  Con  <->  A. u  e.  ( Jt  A
) A. v  e.  ( Jt  A ) ( ( u  =/=  (/)  /\  v  =/=  (/)  /\  ( u  i^i  v )  =  (/) )  ->  ( u  u.  v )  =/= 
A ) ) )
4 vex 3098 . . . . 5  |-  x  e. 
_V
54inex1 4578 . . . 4  |-  ( x  i^i  A )  e. 
_V
65a1i 11 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  x  e.  J )  ->  (
x  i^i  A )  e.  _V )
7 toponmax 19407 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
87adantr 465 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  X  e.  J )
9 simpr 461 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  C_  X )
108, 9ssexd 4584 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  e.  _V )
11 elrest 14807 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  _V )  ->  (
u  e.  ( Jt  A )  <->  E. x  e.  J  u  =  ( x  i^i  A ) ) )
1210, 11syldan 470 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
u  e.  ( Jt  A )  <->  E. x  e.  J  u  =  ( x  i^i  A ) ) )
13 vex 3098 . . . . . 6  |-  y  e. 
_V
1413inex1 4578 . . . . 5  |-  ( y  i^i  A )  e. 
_V
1514a1i 11 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  y  e.  J )  ->  (
y  i^i  A )  e.  _V )
16 elrest 14807 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  _V )  ->  (
v  e.  ( Jt  A )  <->  E. y  e.  J  v  =  ( y  i^i  A ) ) )
1710, 16syldan 470 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
v  e.  ( Jt  A )  <->  E. y  e.  J  v  =  ( y  i^i  A ) ) )
1817adantr 465 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i 
A ) )  -> 
( v  e.  ( Jt  A )  <->  E. y  e.  J  v  =  ( y  i^i  A
) ) )
19 simplr 755 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  u  =  ( x  i^i 
A ) )
2019neeq1d 2720 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
u  =/=  (/)  <->  ( x  i^i  A )  =/=  (/) ) )
21 simpr 461 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  v  =  ( y  i^i 
A ) )
2221neeq1d 2720 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
v  =/=  (/)  <->  ( y  i^i  A )  =/=  (/) ) )
2319, 21ineq12d 3686 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
u  i^i  v )  =  ( ( x  i^i  A )  i^i  ( y  i^i  A
) ) )
24 inindir 3701 . . . . . . . 8  |-  ( ( x  i^i  y )  i^i  A )  =  ( ( x  i^i 
A )  i^i  (
y  i^i  A )
)
2523, 24syl6eqr 2502 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
u  i^i  v )  =  ( ( x  i^i  y )  i^i 
A ) )
2625eqeq1d 2445 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
( u  i^i  v
)  =  (/)  <->  ( (
x  i^i  y )  i^i  A )  =  (/) ) )
2720, 22, 263anbi123d 1300 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
( u  =/=  (/)  /\  v  =/=  (/)  /\  ( u  i^i  v )  =  (/) )  <->  ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i 
A )  =/=  (/)  /\  (
( x  i^i  y
)  i^i  A )  =  (/) ) ) )
2819, 21uneq12d 3644 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
u  u.  v )  =  ( ( x  i^i  A )  u.  ( y  i^i  A
) ) )
29 indir 3731 . . . . . . 7  |-  ( ( x  u.  y )  i^i  A )  =  ( ( x  i^i 
A )  u.  (
y  i^i  A )
)
3028, 29syl6eqr 2502 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
u  u.  v )  =  ( ( x  u.  y )  i^i 
A ) )
3130neeq1d 2720 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
( u  u.  v
)  =/=  A  <->  ( (
x  u.  y )  i^i  A )  =/= 
A ) )
3227, 31imbi12d 320 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i  A ) )  /\  v  =  ( y  i^i  A
) )  ->  (
( ( u  =/=  (/)  /\  v  =/=  (/)  /\  (
u  i^i  v )  =  (/) )  ->  (
u  u.  v )  =/=  A )  <->  ( (
( x  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
3315, 18, 32ralxfr2d 4653 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  u  =  ( x  i^i 
A ) )  -> 
( A. v  e.  ( Jt  A ) ( ( u  =/=  (/)  /\  v  =/=  (/)  /\  ( u  i^i  v )  =  (/) )  ->  ( u  u.  v )  =/= 
A )  <->  A. y  e.  J  ( (
( x  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
346, 12, 33ralxfr2d 4653 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( A. u  e.  ( Jt  A ) A. v  e.  ( Jt  A ) ( ( u  =/=  (/)  /\  v  =/=  (/)  /\  ( u  i^i  v )  =  (/) )  ->  ( u  u.  v )  =/= 
A )  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
353, 34bitrd 253 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( Jt  A )  e.  Con  <->  A. x  e.  J  A. y  e.  J  (
( ( x  i^i 
A )  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   _Vcvv 3095    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3770   ` cfv 5578  (class class class)co 6281   ↾t crest 14800  TopOnctopon 19373   Conccon 19890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-oadd 7136  df-er 7313  df-en 7519  df-fin 7522  df-fi 7873  df-rest 14802  df-topgen 14823  df-top 19377  df-bases 19379  df-topon 19380  df-cld 19498  df-con 19891
This theorem is referenced by:  connsub  19900  nconsubb  19902
  Copyright terms: Public domain W3C validator