MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  constr3pthlem1 Structured version   Unicode version

Theorem constr3pthlem1 24633
Description: Lemma for constr3pth 24638. (Contributed by Alexander van der Vekens, 13-Nov-2017.)
Hypotheses
Ref Expression
constr3cycl.f  |-  F  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }
constr3cycl.p  |-  P  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )
Assertion
Ref Expression
constr3pthlem1  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( P  |`  (
1..^ ( # `  F
) ) )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. } )

Proof of Theorem constr3pthlem1
StepHypRef Expression
1 df-pr 4017 . . . . . . 7  |-  { <. 0 ,  A >. , 
<. 1 ,  B >. }  =  ( {
<. 0 ,  A >. }  u.  { <. 1 ,  B >. } )
21reseq1i 5259 . . . . . 6  |-  ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  |`  { 1 ,  2 } )  =  ( ( {
<. 0 ,  A >. }  u.  { <. 1 ,  B >. } )  |`  { 1 ,  2 } )
3 resundir 5278 . . . . . 6  |-  ( ( { <. 0 ,  A >. }  u.  { <. 1 ,  B >. } )  |`  { 1 ,  2 } )  =  ( ( {
<. 0 ,  A >. }  |`  { 1 ,  2 } )  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )
42, 3eqtri 2472 . . . . 5  |-  ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  |`  { 1 ,  2 } )  =  ( ( {
<. 0 ,  A >. }  |`  { 1 ,  2 } )  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )
5 0ne1 10610 . . . . . . . . 9  |-  0  =/=  1
6 0ne2 10754 . . . . . . . . 9  |-  0  =/=  2
75, 6nelpri 4035 . . . . . . . 8  |-  -.  0  e.  { 1 ,  2 }
8 ressnop0 6063 . . . . . . . 8  |-  ( -.  0  e.  { 1 ,  2 }  ->  ( { <. 0 ,  A >. }  |`  { 1 ,  2 } )  =  (/) )
97, 8ax-mp 5 . . . . . . 7  |-  ( {
<. 0 ,  A >. }  |`  { 1 ,  2 } )  =  (/)
109uneq1i 3639 . . . . . 6  |-  ( ( { <. 0 ,  A >. }  |`  { 1 ,  2 } )  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )  =  ( (/)  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )
11 uncom 3633 . . . . . . . 8  |-  ( (/)  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )  =  ( ( { <. 1 ,  B >. }  |`  { 1 ,  2 } )  u.  (/) )
12 un0 3796 . . . . . . . 8  |-  ( ( { <. 1 ,  B >. }  |`  { 1 ,  2 } )  u.  (/) )  =  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } )
1311, 12eqtri 2472 . . . . . . 7  |-  ( (/)  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )  =  ( {
<. 1 ,  B >. }  |`  { 1 ,  2 } )
14 1re 9598 . . . . . . . . . . 11  |-  1  e.  RR
1514jctl 541 . . . . . . . . . 10  |-  ( B  e.  V  ->  (
1  e.  RR  /\  B  e.  V )
)
1615adantr 465 . . . . . . . . 9  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( 1  e.  RR  /\  B  e.  V ) )
17 funsng 5624 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  B  e.  V )  ->  Fun  { <. 1 ,  B >. } )
18 funrel 5595 . . . . . . . . 9  |-  ( Fun 
{ <. 1 ,  B >. }  ->  Rel  { <. 1 ,  B >. } )
1916, 17, 183syl 20 . . . . . . . 8  |-  ( ( B  e.  V  /\  C  e.  W )  ->  Rel  { <. 1 ,  B >. } )
20 dmsnopss 5470 . . . . . . . . 9  |-  dom  { <. 1 ,  B >. } 
C_  { 1 }
21 snsspr1 4164 . . . . . . . . 9  |-  { 1 }  C_  { 1 ,  2 }
2220, 21sstri 3498 . . . . . . . 8  |-  dom  { <. 1 ,  B >. } 
C_  { 1 ,  2 }
23 relssres 5301 . . . . . . . 8  |-  ( ( Rel  { <. 1 ,  B >. }  /\  dom  {
<. 1 ,  B >. }  C_  { 1 ,  2 } )  ->  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } )  =  { <. 1 ,  B >. } )
2419, 22, 23sylancl 662 . . . . . . 7  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } )  =  { <. 1 ,  B >. } )
2513, 24syl5eq 2496 . . . . . 6  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( (/)  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )  =  { <. 1 ,  B >. } )
2610, 25syl5eq 2496 . . . . 5  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( { <. 0 ,  A >. }  |`  { 1 ,  2 } )  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )  =  { <. 1 ,  B >. } )
274, 26syl5eq 2496 . . . 4  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  |`  { 1 ,  2 } )  =  { <. 1 ,  B >. } )
28 df-pr 4017 . . . . . . 7  |-  { <. 2 ,  C >. , 
<. 3 ,  A >. }  =  ( {
<. 2 ,  C >. }  u.  { <. 3 ,  A >. } )
2928reseq1i 5259 . . . . . 6  |-  ( {
<. 2 ,  C >. ,  <. 3 ,  A >. }  |`  { 1 ,  2 } )  =  ( ( {
<. 2 ,  C >. }  u.  { <. 3 ,  A >. } )  |`  { 1 ,  2 } )
30 resundir 5278 . . . . . 6  |-  ( ( { <. 2 ,  C >. }  u.  { <. 3 ,  A >. } )  |`  { 1 ,  2 } )  =  ( ( {
<. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  ( { <. 3 ,  A >. }  |`  { 1 ,  2 } ) )
3129, 30eqtri 2472 . . . . 5  |-  ( {
<. 2 ,  C >. ,  <. 3 ,  A >. }  |`  { 1 ,  2 } )  =  ( ( {
<. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  ( { <. 3 ,  A >. }  |`  { 1 ,  2 } ) )
32 1lt3 10711 . . . . . . . . . 10  |-  1  <  3
3314, 32gtneii 9699 . . . . . . . . 9  |-  3  =/=  1
34 2re 10612 . . . . . . . . . 10  |-  2  e.  RR
35 2lt3 10710 . . . . . . . . . 10  |-  2  <  3
3634, 35gtneii 9699 . . . . . . . . 9  |-  3  =/=  2
3733, 36nelpri 4035 . . . . . . . 8  |-  -.  3  e.  { 1 ,  2 }
38 ressnop0 6063 . . . . . . . 8  |-  ( -.  3  e.  { 1 ,  2 }  ->  ( { <. 3 ,  A >. }  |`  { 1 ,  2 } )  =  (/) )
3937, 38ax-mp 5 . . . . . . 7  |-  ( {
<. 3 ,  A >. }  |`  { 1 ,  2 } )  =  (/)
4039uneq2i 3640 . . . . . 6  |-  ( ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  ( { <. 3 ,  A >. }  |`  { 1 ,  2 } ) )  =  ( ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  (/) )
41 un0 3796 . . . . . . 7  |-  ( ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  (/) )  =  ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )
42 2z 10903 . . . . . . . . . . 11  |-  2  e.  ZZ
43 funsng 5624 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  C  e.  W )  ->  Fun  { <. 2 ,  C >. } )
4442, 43mpan 670 . . . . . . . . . 10  |-  ( C  e.  W  ->  Fun  {
<. 2 ,  C >. } )
45 funrel 5595 . . . . . . . . . 10  |-  ( Fun 
{ <. 2 ,  C >. }  ->  Rel  { <. 2 ,  C >. } )
4644, 45syl 16 . . . . . . . . 9  |-  ( C  e.  W  ->  Rel  {
<. 2 ,  C >. } )
4746adantl 466 . . . . . . . 8  |-  ( ( B  e.  V  /\  C  e.  W )  ->  Rel  { <. 2 ,  C >. } )
48 dmsnopss 5470 . . . . . . . . 9  |-  dom  { <. 2 ,  C >. } 
C_  { 2 }
49 snsspr2 4165 . . . . . . . . 9  |-  { 2 }  C_  { 1 ,  2 }
5048, 49sstri 3498 . . . . . . . 8  |-  dom  { <. 2 ,  C >. } 
C_  { 1 ,  2 }
51 relssres 5301 . . . . . . . 8  |-  ( ( Rel  { <. 2 ,  C >. }  /\  dom  {
<. 2 ,  C >. }  C_  { 1 ,  2 } )  ->  ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  =  { <. 2 ,  C >. } )
5247, 50, 51sylancl 662 . . . . . . 7  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  =  { <. 2 ,  C >. } )
5341, 52syl5eq 2496 . . . . . 6  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  (/) )  =  { <. 2 ,  C >. } )
5440, 53syl5eq 2496 . . . . 5  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  ( { <. 3 ,  A >. }  |`  { 1 ,  2 } ) )  =  { <. 2 ,  C >. } )
5531, 54syl5eq 2496 . . . 4  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( { <. 2 ,  C >. ,  <. 3 ,  A >. }  |`  { 1 ,  2 } )  =  { <. 2 ,  C >. } )
5627, 55uneq12d 3644 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  |`  { 1 ,  2 } )  u.  ( { <. 2 ,  C >. , 
<. 3 ,  A >. }  |`  { 1 ,  2 } ) )  =  ( {
<. 1 ,  B >. }  u.  { <. 2 ,  C >. } ) )
57 resundir 5278 . . 3  |-  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  |`  { 1 ,  2 } )  =  ( ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  |`  { 1 ,  2 } )  u.  ( { <. 2 ,  C >. , 
<. 3 ,  A >. }  |`  { 1 ,  2 } ) )
58 df-pr 4017 . . 3  |-  { <. 1 ,  B >. , 
<. 2 ,  C >. }  =  ( {
<. 1 ,  B >. }  u.  { <. 2 ,  C >. } )
5956, 57, 583eqtr4g 2509 . 2  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  |`  { 1 ,  2 } )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. } )
60 constr3cycl.p . . 3  |-  P  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )
61 id 22 . . . . 5  |-  ( P  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  ->  P  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) )
62 constr3cycl.f . . . . . . . . 9  |-  F  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }
6362, 60constr3lem2 24624 . . . . . . . 8  |-  ( # `  F )  =  3
6463oveq2i 6292 . . . . . . 7  |-  ( 1..^ ( # `  F
) )  =  ( 1..^ 3 )
65 3z 10904 . . . . . . . 8  |-  3  e.  ZZ
66 fzoval 11812 . . . . . . . 8  |-  ( 3  e.  ZZ  ->  (
1..^ 3 )  =  ( 1 ... (
3  -  1 ) ) )
6765, 66ax-mp 5 . . . . . . 7  |-  ( 1..^ 3 )  =  ( 1 ... ( 3  -  1 ) )
68 3m1e2 10659 . . . . . . . . . 10  |-  ( 3  -  1 )  =  2
69 df-2 10601 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
7068, 69eqtri 2472 . . . . . . . . 9  |-  ( 3  -  1 )  =  ( 1  +  1 )
7170oveq2i 6292 . . . . . . . 8  |-  ( 1 ... ( 3  -  1 ) )  =  ( 1 ... (
1  +  1 ) )
72 1z 10901 . . . . . . . . 9  |-  1  e.  ZZ
73 fzpr 11746 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) } )
7472, 73ax-mp 5 . . . . . . . 8  |-  ( 1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) }
75 1p1e2 10656 . . . . . . . . 9  |-  ( 1  +  1 )  =  2
7675preq2i 4098 . . . . . . . 8  |-  { 1 ,  ( 1  +  1 ) }  =  { 1 ,  2 }
7771, 74, 763eqtri 2476 . . . . . . 7  |-  ( 1 ... ( 3  -  1 ) )  =  { 1 ,  2 }
7864, 67, 773eqtri 2476 . . . . . 6  |-  ( 1..^ ( # `  F
) )  =  {
1 ,  2 }
7978a1i 11 . . . . 5  |-  ( P  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  ->  (
1..^ ( # `  F
) )  =  {
1 ,  2 } )
8061, 79reseq12d 5264 . . . 4  |-  ( P  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  ->  ( P  |`  ( 1..^ (
# `  F )
) )  =  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  |`  { 1 ,  2 } ) )
8180eqeq1d 2445 . . 3  |-  ( P  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  ->  (
( P  |`  (
1..^ ( # `  F
) ) )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. }  <->  ( ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  |`  { 1 ,  2 } )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. } ) )
8260, 81ax-mp 5 . 2  |-  ( ( P  |`  ( 1..^ ( # `  F
) ) )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. }  <->  ( ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  |`  { 1 ,  2 } )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. } )
8359, 82sylibr 212 1  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( P  |`  (
1..^ ( # `  F
) ) )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    u. cun 3459    C_ wss 3461   (/)c0 3770   {csn 4014   {cpr 4016   {ctp 4018   <.cop 4020   `'ccnv 4988   dom cdm 4989    |` cres 4991   Rel wrel 4994   Fun wfun 5572   ` cfv 5578  (class class class)co 6281   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498    - cmin 9810   2c2 10592   3c3 10593   ZZcz 10871   ...cfz 11683  ..^cfzo 11806   #chash 12387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-2 10601  df-3 10602  df-n0 10803  df-z 10872  df-uz 11093  df-fz 11684  df-fzo 11807  df-hash 12388
This theorem is referenced by:  constr3pthlem2  24634
  Copyright terms: Public domain W3C validator