MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  constr3pthlem1 Unicode version

Theorem constr3pthlem1 21595
Description: Lemma for constr3pth 21600. (Contributed by Alexander van der Vekens, 13-Nov-2017.)
Hypotheses
Ref Expression
constr3cycl.f  |-  F  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }
constr3cycl.p  |-  P  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )
Assertion
Ref Expression
constr3pthlem1  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( P  |`  (
1..^ ( # `  F
) ) )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. } )

Proof of Theorem constr3pthlem1
StepHypRef Expression
1 df-pr 3781 . . . . . . 7  |-  { <. 0 ,  A >. , 
<. 1 ,  B >. }  =  ( {
<. 0 ,  A >. }  u.  { <. 1 ,  B >. } )
21reseq1i 5101 . . . . . 6  |-  ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  |`  { 1 ,  2 } )  =  ( ( {
<. 0 ,  A >. }  u.  { <. 1 ,  B >. } )  |`  { 1 ,  2 } )
3 resundir 5120 . . . . . 6  |-  ( ( { <. 0 ,  A >. }  u.  { <. 1 ,  B >. } )  |`  { 1 ,  2 } )  =  ( ( {
<. 0 ,  A >. }  |`  { 1 ,  2 } )  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )
42, 3eqtri 2424 . . . . 5  |-  ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  |`  { 1 ,  2 } )  =  ( ( {
<. 0 ,  A >. }  |`  { 1 ,  2 } )  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )
5 ax-1ne0 9015 . . . . . . . . . 10  |-  1  =/=  0
65necomi 2649 . . . . . . . . 9  |-  0  =/=  1
7 2ne0 10039 . . . . . . . . . 10  |-  2  =/=  0
87necomi 2649 . . . . . . . . 9  |-  0  =/=  2
96, 8nelpri 3795 . . . . . . . 8  |-  -.  0  e.  { 1 ,  2 }
10 ressnop0 5872 . . . . . . . 8  |-  ( -.  0  e.  { 1 ,  2 }  ->  ( { <. 0 ,  A >. }  |`  { 1 ,  2 } )  =  (/) )
119, 10ax-mp 8 . . . . . . 7  |-  ( {
<. 0 ,  A >. }  |`  { 1 ,  2 } )  =  (/)
1211uneq1i 3457 . . . . . 6  |-  ( ( { <. 0 ,  A >. }  |`  { 1 ,  2 } )  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )  =  ( (/)  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )
13 uncom 3451 . . . . . . . 8  |-  ( (/)  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )  =  ( ( { <. 1 ,  B >. }  |`  { 1 ,  2 } )  u.  (/) )
14 un0 3612 . . . . . . . 8  |-  ( ( { <. 1 ,  B >. }  |`  { 1 ,  2 } )  u.  (/) )  =  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } )
1513, 14eqtri 2424 . . . . . . 7  |-  ( (/)  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )  =  ( {
<. 1 ,  B >. }  |`  { 1 ,  2 } )
16 1re 9046 . . . . . . . . . . 11  |-  1  e.  RR
1716jctl 526 . . . . . . . . . 10  |-  ( B  e.  V  ->  (
1  e.  RR  /\  B  e.  V )
)
1817adantr 452 . . . . . . . . 9  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( 1  e.  RR  /\  B  e.  V ) )
19 funsng 5456 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  B  e.  V )  ->  Fun  { <. 1 ,  B >. } )
20 funrel 5430 . . . . . . . . 9  |-  ( Fun 
{ <. 1 ,  B >. }  ->  Rel  { <. 1 ,  B >. } )
2118, 19, 203syl 19 . . . . . . . 8  |-  ( ( B  e.  V  /\  C  e.  W )  ->  Rel  { <. 1 ,  B >. } )
22 dmsnopss 5301 . . . . . . . . 9  |-  dom  { <. 1 ,  B >. } 
C_  { 1 }
23 snsspr1 3907 . . . . . . . . 9  |-  { 1 }  C_  { 1 ,  2 }
2422, 23sstri 3317 . . . . . . . 8  |-  dom  { <. 1 ,  B >. } 
C_  { 1 ,  2 }
25 relssres 5142 . . . . . . . 8  |-  ( ( Rel  { <. 1 ,  B >. }  /\  dom  {
<. 1 ,  B >. }  C_  { 1 ,  2 } )  ->  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } )  =  { <. 1 ,  B >. } )
2621, 24, 25sylancl 644 . . . . . . 7  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } )  =  { <. 1 ,  B >. } )
2715, 26syl5eq 2448 . . . . . 6  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( (/)  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )  =  { <. 1 ,  B >. } )
2812, 27syl5eq 2448 . . . . 5  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( { <. 0 ,  A >. }  |`  { 1 ,  2 } )  u.  ( { <. 1 ,  B >. }  |`  { 1 ,  2 } ) )  =  { <. 1 ,  B >. } )
294, 28syl5eq 2448 . . . 4  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  |`  { 1 ,  2 } )  =  { <. 1 ,  B >. } )
30 df-pr 3781 . . . . . . 7  |-  { <. 2 ,  C >. , 
<. 3 ,  A >. }  =  ( {
<. 2 ,  C >. }  u.  { <. 3 ,  A >. } )
3130reseq1i 5101 . . . . . 6  |-  ( {
<. 2 ,  C >. ,  <. 3 ,  A >. }  |`  { 1 ,  2 } )  =  ( ( {
<. 2 ,  C >. }  u.  { <. 3 ,  A >. } )  |`  { 1 ,  2 } )
32 resundir 5120 . . . . . 6  |-  ( ( { <. 2 ,  C >. }  u.  { <. 3 ,  A >. } )  |`  { 1 ,  2 } )  =  ( ( {
<. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  ( { <. 3 ,  A >. }  |`  { 1 ,  2 } ) )
3331, 32eqtri 2424 . . . . 5  |-  ( {
<. 2 ,  C >. ,  <. 3 ,  A >. }  |`  { 1 ,  2 } )  =  ( ( {
<. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  ( { <. 3 ,  A >. }  |`  { 1 ,  2 } ) )
34 1lt3 10100 . . . . . . . . . 10  |-  1  <  3
3516, 34gtneii 9141 . . . . . . . . 9  |-  3  =/=  1
36 2re 10025 . . . . . . . . . 10  |-  2  e.  RR
37 2lt3 10099 . . . . . . . . . 10  |-  2  <  3
3836, 37gtneii 9141 . . . . . . . . 9  |-  3  =/=  2
3935, 38nelpri 3795 . . . . . . . 8  |-  -.  3  e.  { 1 ,  2 }
40 ressnop0 5872 . . . . . . . 8  |-  ( -.  3  e.  { 1 ,  2 }  ->  ( { <. 3 ,  A >. }  |`  { 1 ,  2 } )  =  (/) )
4139, 40ax-mp 8 . . . . . . 7  |-  ( {
<. 3 ,  A >. }  |`  { 1 ,  2 } )  =  (/)
4241uneq2i 3458 . . . . . 6  |-  ( ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  ( { <. 3 ,  A >. }  |`  { 1 ,  2 } ) )  =  ( ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  (/) )
43 un0 3612 . . . . . . 7  |-  ( ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  (/) )  =  ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )
44 2z 10268 . . . . . . . . . . 11  |-  2  e.  ZZ
45 funsng 5456 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  C  e.  W )  ->  Fun  { <. 2 ,  C >. } )
4644, 45mpan 652 . . . . . . . . . 10  |-  ( C  e.  W  ->  Fun  {
<. 2 ,  C >. } )
47 funrel 5430 . . . . . . . . . 10  |-  ( Fun 
{ <. 2 ,  C >. }  ->  Rel  { <. 2 ,  C >. } )
4846, 47syl 16 . . . . . . . . 9  |-  ( C  e.  W  ->  Rel  {
<. 2 ,  C >. } )
4948adantl 453 . . . . . . . 8  |-  ( ( B  e.  V  /\  C  e.  W )  ->  Rel  { <. 2 ,  C >. } )
50 dmsnopss 5301 . . . . . . . . 9  |-  dom  { <. 2 ,  C >. } 
C_  { 2 }
51 snsspr2 3908 . . . . . . . . 9  |-  { 2 }  C_  { 1 ,  2 }
5250, 51sstri 3317 . . . . . . . 8  |-  dom  { <. 2 ,  C >. } 
C_  { 1 ,  2 }
53 relssres 5142 . . . . . . . 8  |-  ( ( Rel  { <. 2 ,  C >. }  /\  dom  {
<. 2 ,  C >. }  C_  { 1 ,  2 } )  ->  ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  =  { <. 2 ,  C >. } )
5449, 52, 53sylancl 644 . . . . . . 7  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  =  { <. 2 ,  C >. } )
5543, 54syl5eq 2448 . . . . . 6  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  (/) )  =  { <. 2 ,  C >. } )
5642, 55syl5eq 2448 . . . . 5  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( { <. 2 ,  C >. }  |`  { 1 ,  2 } )  u.  ( { <. 3 ,  A >. }  |`  { 1 ,  2 } ) )  =  { <. 2 ,  C >. } )
5733, 56syl5eq 2448 . . . 4  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( { <. 2 ,  C >. ,  <. 3 ,  A >. }  |`  { 1 ,  2 } )  =  { <. 2 ,  C >. } )
5829, 57uneq12d 3462 . . 3  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  |`  { 1 ,  2 } )  u.  ( { <. 2 ,  C >. , 
<. 3 ,  A >. }  |`  { 1 ,  2 } ) )  =  ( {
<. 1 ,  B >. }  u.  { <. 2 ,  C >. } ) )
59 resundir 5120 . . 3  |-  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  |`  { 1 ,  2 } )  =  ( ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  |`  { 1 ,  2 } )  u.  ( { <. 2 ,  C >. , 
<. 3 ,  A >. }  |`  { 1 ,  2 } ) )
60 df-pr 3781 . . 3  |-  { <. 1 ,  B >. , 
<. 2 ,  C >. }  =  ( {
<. 1 ,  B >. }  u.  { <. 2 ,  C >. } )
6158, 59, 603eqtr4g 2461 . 2  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  |`  { 1 ,  2 } )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. } )
62 constr3cycl.p . . 3  |-  P  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )
63 id 20 . . . . 5  |-  ( P  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  ->  P  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) )
64 constr3cycl.f . . . . . . . . 9  |-  F  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }
6564, 62constr3lem2 21586 . . . . . . . 8  |-  ( # `  F )  =  3
6665oveq2i 6051 . . . . . . 7  |-  ( 1..^ ( # `  F
) )  =  ( 1..^ 3 )
67 3nn0 10195 . . . . . . . . 9  |-  3  e.  NN0
6867nn0zi 10262 . . . . . . . 8  |-  3  e.  ZZ
69 fzoval 11096 . . . . . . . 8  |-  ( 3  e.  ZZ  ->  (
1..^ 3 )  =  ( 1 ... (
3  -  1 ) ) )
7068, 69ax-mp 8 . . . . . . 7  |-  ( 1..^ 3 )  =  ( 1 ... ( 3  -  1 ) )
71 3m1e2 10052 . . . . . . . . . 10  |-  ( 3  -  1 )  =  2
72 df-2 10014 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
7371, 72eqtri 2424 . . . . . . . . 9  |-  ( 3  -  1 )  =  ( 1  +  1 )
7473oveq2i 6051 . . . . . . . 8  |-  ( 1 ... ( 3  -  1 ) )  =  ( 1 ... (
1  +  1 ) )
75 1z 10267 . . . . . . . . 9  |-  1  e.  ZZ
76 fzpr 11057 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) } )
7775, 76ax-mp 8 . . . . . . . 8  |-  ( 1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) }
78 1p1e2 10050 . . . . . . . . 9  |-  ( 1  +  1 )  =  2
7978preq2i 3847 . . . . . . . 8  |-  { 1 ,  ( 1  +  1 ) }  =  { 1 ,  2 }
8074, 77, 793eqtri 2428 . . . . . . 7  |-  ( 1 ... ( 3  -  1 ) )  =  { 1 ,  2 }
8166, 70, 803eqtri 2428 . . . . . 6  |-  ( 1..^ ( # `  F
) )  =  {
1 ,  2 }
8281a1i 11 . . . . 5  |-  ( P  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  ->  (
1..^ ( # `  F
) )  =  {
1 ,  2 } )
8363, 82reseq12d 5106 . . . 4  |-  ( P  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  ->  ( P  |`  ( 1..^ (
# `  F )
) )  =  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  |`  { 1 ,  2 } ) )
8483eqeq1d 2412 . . 3  |-  ( P  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  ->  (
( P  |`  (
1..^ ( # `  F
) ) )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. }  <->  ( ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  |`  { 1 ,  2 } )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. } ) )
8562, 84ax-mp 8 . 2  |-  ( ( P  |`  ( 1..^ ( # `  F
) ) )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. }  <->  ( ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  |`  { 1 ,  2 } )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. } )
8661, 85sylibr 204 1  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( P  |`  (
1..^ ( # `  F
) ) )  =  { <. 1 ,  B >. ,  <. 2 ,  C >. } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    u. cun 3278    C_ wss 3280   (/)c0 3588   {csn 3774   {cpr 3775   {ctp 3776   <.cop 3777   `'ccnv 4836   dom cdm 4837    |` cres 4839   Rel wrel 4842   Fun wfun 5407   ` cfv 5413  (class class class)co 6040   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    - cmin 9247   2c2 10005   3c3 10006   ZZcz 10238   ...cfz 10999  ..^cfzo 11090   #chash 11573
This theorem is referenced by:  constr3pthlem2  21596
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fzo 11091  df-hash 11574
  Copyright terms: Public domain W3C validator