MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  constr3lem4 Structured version   Unicode version

Theorem constr3lem4 25317
Description: Lemma for constr3trl 25329 etc. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Proof shortened by Alexander van der Vekens, 16-Dec-2017.)
Hypotheses
Ref Expression
constr3cycl.f  |-  F  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }
constr3cycl.p  |-  P  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )
Assertion
Ref Expression
constr3lem4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  A ) ) )

Proof of Theorem constr3lem4
StepHypRef Expression
1 0z 10899 . . . . . 6  |-  0  e.  ZZ
2 1z 10918 . . . . . 6  |-  1  e.  ZZ
31, 2pm3.2i 456 . . . . 5  |-  ( 0  e.  ZZ  /\  1  e.  ZZ )
43a1i 11 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( 0  e.  ZZ  /\  1  e.  ZZ ) )
5 3simpa 1002 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( A  e.  V  /\  B  e.  V
) )
6 0ne1 10628 . . . . 5  |-  0  =/=  1
76a1i 11 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  0  =/=  1 )
8 fnprg 5598 . . . 4  |-  ( ( ( 0  e.  ZZ  /\  1  e.  ZZ )  /\  ( A  e.  V  /\  B  e.  V )  /\  0  =/=  1 )  ->  { <. 0 ,  A >. , 
<. 1 ,  B >. }  Fn  { 0 ,  1 } )
94, 5, 7, 8syl3anc 1264 . . 3  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 } )
10 2z 10920 . . . . . 6  |-  2  e.  ZZ
11 3nn0 10838 . . . . . 6  |-  3  e.  NN0
1210, 11pm3.2i 456 . . . . 5  |-  ( 2  e.  ZZ  /\  3  e.  NN0 )
1312a1i 11 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( 2  e.  ZZ  /\  3  e.  NN0 )
)
14 pm3.22 450 . . . . 5  |-  ( ( A  e.  V  /\  C  e.  V )  ->  ( C  e.  V  /\  A  e.  V
) )
15143adant2 1024 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( C  e.  V  /\  A  e.  V
) )
16 2re 10630 . . . . . 6  |-  2  e.  RR
17 2lt3 10728 . . . . . 6  |-  2  <  3
1816, 17ltneii 9698 . . . . 5  |-  2  =/=  3
1918a1i 11 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  2  =/=  3 )
20 fnprg 5598 . . . 4  |-  ( ( ( 2  e.  ZZ  /\  3  e.  NN0 )  /\  ( C  e.  V  /\  A  e.  V
)  /\  2  =/=  3 )  ->  { <. 2 ,  C >. , 
<. 3 ,  A >. }  Fn  { 2 ,  3 } )
2113, 15, 19, 20syl3anc 1264 . . 3  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 } )
22 0ne2 10772 . . . . 5  |-  0  =/=  2
23 1ne2 10773 . . . . 5  |-  1  =/=  2
24 3ne0 10655 . . . . . 6  |-  3  =/=  0
2524necomi 2655 . . . . 5  |-  0  =/=  3
26 1re 9593 . . . . . 6  |-  1  e.  RR
27 1lt3 10729 . . . . . 6  |-  1  <  3
2826, 27ltneii 9698 . . . . 5  |-  1  =/=  3
29 disjpr2 4005 . . . . 5  |-  ( ( ( 0  =/=  2  /\  1  =/=  2
)  /\  ( 0  =/=  3  /\  1  =/=  3 ) )  -> 
( { 0 ,  1 }  i^i  {
2 ,  3 } )  =  (/) )
3022, 23, 25, 28, 29mp4an 677 . . . 4  |-  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)
3130a1i 11 . . 3  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( { 0 ,  1 }  i^i  {
2 ,  3 } )  =  (/) )
329, 21, 313jca 1185 . 2  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) ) )
33 constr3cycl.p . . . . . 6  |-  P  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )
3433fveq1i 5826 . . . . 5  |-  ( P `
 0 )  =  ( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  0
)
35 c0ex 9588 . . . . . . . . . 10  |-  0  e.  _V
3635prid1 4051 . . . . . . . . 9  |-  0  e.  { 0 ,  1 }
3736jctr 544 . . . . . . . 8  |-  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  ->  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  0  e.  { 0 ,  1 } ) )
38373anim3i 1193 . . . . . . 7  |-  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  0  e.  { 0 ,  1 } ) ) )
3938adantr 466 . . . . . 6  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  0  e.  { 0 ,  1 } ) ) )
40 fvun1 5896 . . . . . 6  |-  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  0  e.  { 0 ,  1 } ) )  -> 
( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  0
)  =  ( {
<. 0 ,  A >. ,  <. 1 ,  B >. } `  0 ) )
4139, 40syl 17 . . . . 5  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  0
)  =  ( {
<. 0 ,  A >. ,  <. 1 ,  B >. } `  0 ) )
4234, 41syl5eq 2474 . . . 4  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( P `  0 )  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. } `  0 ) )
43 fvpr1g 6068 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  A  e.  V  /\  0  =/=  1 )  -> 
( { <. 0 ,  A >. ,  <. 1 ,  B >. } `  0
)  =  A )
441, 6, 43mp3an13 1351 . . . . . 6  |-  ( A  e.  V  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. } `  0 )  =  A )
45443ad2ant1 1026 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. } `  0
)  =  A )
4645adantl 467 . . . 4  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. } `  0 )  =  A )
4742, 46eqtrd 2462 . . 3  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( P `  0 )  =  A )
4833fveq1i 5826 . . . . 5  |-  ( P `
 1 )  =  ( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  1
)
49 1ex 9589 . . . . . . . . . 10  |-  1  e.  _V
5049prid2 4052 . . . . . . . . 9  |-  1  e.  { 0 ,  1 }
5150jctr 544 . . . . . . . 8  |-  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  ->  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  1  e.  { 0 ,  1 } ) )
52513anim3i 1193 . . . . . . 7  |-  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  1  e.  { 0 ,  1 } ) ) )
5352adantr 466 . . . . . 6  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  1  e.  { 0 ,  1 } ) ) )
54 fvun1 5896 . . . . . 6  |-  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  1  e.  { 0 ,  1 } ) )  -> 
( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  1
)  =  ( {
<. 0 ,  A >. ,  <. 1 ,  B >. } `  1 ) )
5553, 54syl 17 . . . . 5  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  1
)  =  ( {
<. 0 ,  A >. ,  <. 1 ,  B >. } `  1 ) )
5648, 55syl5eq 2474 . . . 4  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( P `  1 )  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. } `  1 ) )
57 fvpr2g 6069 . . . . . . 7  |-  ( ( 1  e.  RR  /\  B  e.  V  /\  0  =/=  1 )  -> 
( { <. 0 ,  A >. ,  <. 1 ,  B >. } `  1
)  =  B )
5826, 6, 57mp3an13 1351 . . . . . 6  |-  ( B  e.  V  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. } `  1 )  =  B )
59583ad2ant2 1027 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. } `  1
)  =  B )
6059adantl 467 . . . 4  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. } `  1 )  =  B )
6156, 60eqtrd 2462 . . 3  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( P `  1 )  =  B )
6233fveq1i 5826 . . . . . 6  |-  ( P `
 2 )  =  ( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  2
)
63 2ex 10632 . . . . . . . . . . 11  |-  2  e.  _V
6463prid1 4051 . . . . . . . . . 10  |-  2  e.  { 2 ,  3 }
6564jctr 544 . . . . . . . . 9  |-  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  ->  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  2  e.  { 2 ,  3 } ) )
66653anim3i 1193 . . . . . . . 8  |-  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  2  e.  { 2 ,  3 } ) ) )
6766adantr 466 . . . . . . 7  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  2  e.  { 2 ,  3 } ) ) )
68 fvun2 5897 . . . . . . 7  |-  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  2  e.  { 2 ,  3 } ) )  -> 
( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  2
)  =  ( {
<. 2 ,  C >. ,  <. 3 ,  A >. } `  2 ) )
6967, 68syl 17 . . . . . 6  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  2
)  =  ( {
<. 2 ,  C >. ,  <. 3 ,  A >. } `  2 ) )
7062, 69syl5eq 2474 . . . . 5  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( P `  2 )  =  ( { <. 2 ,  C >. , 
<. 3 ,  A >. } `  2 ) )
71 fvpr1g 6068 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  C  e.  V  /\  2  =/=  3 )  -> 
( { <. 2 ,  C >. ,  <. 3 ,  A >. } `  2
)  =  C )
7210, 18, 71mp3an13 1351 . . . . . . 7  |-  ( C  e.  V  ->  ( { <. 2 ,  C >. ,  <. 3 ,  A >. } `  2 )  =  C )
73723ad2ant3 1028 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( { <. 2 ,  C >. ,  <. 3 ,  A >. } `  2
)  =  C )
7473adantl 467 . . . . 5  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( { <. 2 ,  C >. ,  <. 3 ,  A >. } `  2 )  =  C )
7570, 74eqtrd 2462 . . . 4  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( P `  2 )  =  C )
7633fveq1i 5826 . . . . . 6  |-  ( P `
 3 )  =  ( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  3
)
77 3ex 10636 . . . . . . . . . . 11  |-  3  e.  _V
7877prid2 4052 . . . . . . . . . 10  |-  3  e.  { 2 ,  3 }
7978jctr 544 . . . . . . . . 9  |-  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  ->  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  3  e.  { 2 ,  3 } ) )
80793anim3i 1193 . . . . . . . 8  |-  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  3  e.  { 2 ,  3 } ) ) )
8180adantr 466 . . . . . . 7  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  3  e.  { 2 ,  3 } ) ) )
82 fvun2 5897 . . . . . . 7  |-  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  { 0 ,  1 }  /\  {
<. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  { 2 ,  3 }  /\  ( ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/)  /\  3  e.  { 2 ,  3 } ) )  -> 
( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  3
)  =  ( {
<. 2 ,  C >. ,  <. 3 ,  A >. } `  3 ) )
8381, 82syl 17 . . . . . 6  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  3
)  =  ( {
<. 2 ,  C >. ,  <. 3 ,  A >. } `  3 ) )
8476, 83syl5eq 2474 . . . . 5  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( P `  3 )  =  ( { <. 2 ,  C >. , 
<. 3 ,  A >. } `  3 ) )
85 fvpr2g 6069 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  A  e.  V  /\  2  =/=  3 )  -> 
( { <. 2 ,  C >. ,  <. 3 ,  A >. } `  3
)  =  A )
8611, 18, 85mp3an13 1351 . . . . . . 7  |-  ( A  e.  V  ->  ( { <. 2 ,  C >. ,  <. 3 ,  A >. } `  3 )  =  A )
87863ad2ant1 1026 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( { <. 2 ,  C >. ,  <. 3 ,  A >. } `  3
)  =  A )
8887adantl 467 . . . . 5  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( { <. 2 ,  C >. ,  <. 3 ,  A >. } `  3 )  =  A )
8984, 88eqtrd 2462 . . . 4  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  ( P `  3 )  =  A )
9075, 89jca 534 . . 3  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( P `  2
)  =  C  /\  ( P `  3 )  =  A ) )
9147, 61, 90jca31 536 . 2  |-  ( ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  Fn  {
0 ,  1 }  /\  { <. 2 ,  C >. ,  <. 3 ,  A >. }  Fn  {
2 ,  3 }  /\  ( { 0 ,  1 }  i^i  { 2 ,  3 } )  =  (/) )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  A ) ) )
9232, 91mpancom 673 1  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2599    u. cun 3377    i^i cin 3378   (/)c0 3704   {cpr 3943   {ctp 3945   <.cop 3947   `'ccnv 4795    Fn wfn 5539   ` cfv 5544   RRcr 9489   0cc0 9490   1c1 9491   2c2 10610   3c3 10611   NN0cn0 10820   ZZcz 10888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-nn 10561  df-2 10619  df-3 10620  df-n0 10821  df-z 10889
This theorem is referenced by:  constr3lem6  25319  constr3trllem5  25324  constr3cycllem1  25328  constr3cyclp  25332
  Copyright terms: Public domain W3C validator