MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  constr3cyclpe Structured version   Unicode version

Theorem constr3cyclpe 23702
Description: If there are three (different) vertices in a graph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.)
Assertion
Ref Expression
constr3cyclpe  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  E. f E. p ( f ( V Cycles  E ) p  /\  ( # `  f
)  =  3  /\  ( p `  0
)  =  A ) )
Distinct variable groups:    A, f, p    B, f, p    C, f, p    f, E, p   
f, V, p

Proof of Theorem constr3cyclpe
StepHypRef Expression
1 eqid 2454 . . 3  |-  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }
2 eqid 2454 . . 3  |-  ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )
31, 2constr3cyclp 23701 . 2  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }  ( V Cycles  E
) ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. } )  =  3  /\  ( ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  0
)  =  A ) )
4 tpex 6490 . . 3  |-  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }  e.  _V
5 prex 4643 . . . 4  |-  { <. 0 ,  A >. , 
<. 1 ,  B >. }  e.  _V
6 prex 4643 . . . 4  |-  { <. 2 ,  C >. , 
<. 3 ,  A >. }  e.  _V
75, 6unex 6489 . . 3  |-  ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  e.  _V
8 breq12 4406 . . . 4  |-  ( ( f  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }  /\  p  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) )  -> 
( f ( V Cycles  E ) p  <->  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }  ( V Cycles  E
) ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) ) )
9 fveq2 5800 . . . . . 6  |-  ( f  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }  ->  ( # `  f
)  =  ( # `  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. } ) )
109eqeq1d 2456 . . . . 5  |-  ( f  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }  ->  ( ( # `  f )  =  3  <-> 
( # `  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. } )  =  3 ) )
1110adantr 465 . . . 4  |-  ( ( f  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }  /\  p  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) )  -> 
( ( # `  f
)  =  3  <->  ( # `
 { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. } )  =  3 ) )
12 fveq1 5799 . . . . . 6  |-  ( p  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  ->  (
p `  0 )  =  ( ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  0
) )
1312eqeq1d 2456 . . . . 5  |-  ( p  =  ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  ->  (
( p `  0
)  =  A  <->  ( ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  0
)  =  A ) )
1413adantl 466 . . . 4  |-  ( ( f  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }  /\  p  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) )  -> 
( ( p ` 
0 )  =  A  <-> 
( ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  0
)  =  A ) )
158, 11, 143anbi123d 1290 . . 3  |-  ( ( f  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }  /\  p  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) )  -> 
( ( f ( V Cycles  E ) p  /\  ( # `  f
)  =  3  /\  ( p `  0
)  =  A )  <-> 
( { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }  ( V Cycles  E
) ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. } )  =  3  /\  ( ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  0
)  =  A ) ) )
164, 7, 15spc2ev 3171 . 2  |-  ( ( { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }  ( V Cycles  E
) ( { <. 0 ,  A >. , 
<. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )  /\  ( # `
 { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. } )  =  3  /\  ( ( {
<. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } ) `  0
)  =  A )  ->  E. f E. p
( f ( V Cycles  E ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  A ) )
173, 16syl 16 1  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  E. f E. p ( f ( V Cycles  E ) p  /\  ( # `  f
)  =  3  /\  ( p `  0
)  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758    u. cun 3435   {cpr 3988   {ctp 3990   <.cop 3992   class class class wbr 4401   `'ccnv 4948   ran crn 4950   ` cfv 5527  (class class class)co 6201   0cc0 9394   1c1 9395   2c2 10483   3c3 10484   #chash 12221   USGrph cusg 23417   Cycles ccycl 23567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-map 7327  df-pm 7328  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-card 8221  df-cda 8449  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-2 10492  df-3 10493  df-n0 10692  df-z 10759  df-uz 10974  df-fz 11556  df-fzo 11667  df-hash 12222  df-word 12348  df-usgra 23419  df-wlk 23568  df-trail 23569  df-pth 23570  df-cycl 23573
This theorem is referenced by:  3cyclfrgra  30756
  Copyright terms: Public domain W3C validator