MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  constr3cycl Structured version   Unicode version

Theorem constr3cycl 24365
Description: Construction of a 3-cycle from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.)
Hypotheses
Ref Expression
constr3cycl.f  |-  F  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }
constr3cycl.p  |-  P  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )
Assertion
Ref Expression
constr3cycl  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( F ( V Cycles  E
) P  /\  ( # `
 F )  =  3 ) )

Proof of Theorem constr3cycl
StepHypRef Expression
1 usgrav 24042 . . 3  |-  ( V USGrph  E  ->  ( V  e. 
_V  /\  E  e.  _V ) )
2 constr3cycl.f . . . . 5  |-  F  =  { <. 0 ,  ( `' E `  { A ,  B } ) >. ,  <. 1 ,  ( `' E `  { B ,  C } ) >. ,  <. 2 ,  ( `' E `  { C ,  A } ) >. }
3 constr3cycl.p . . . . 5  |-  P  =  ( { <. 0 ,  A >. ,  <. 1 ,  B >. }  u.  { <. 2 ,  C >. , 
<. 3 ,  A >. } )
42, 3constr3lem1 24349 . . . 4  |-  ( F  e.  _V  /\  P  e.  _V )
52, 3constr3pth 24364 . . . . . . . . 9  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  F
( V Paths  E ) P )
653expa 1196 . . . . . . . 8  |-  ( ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  F ( V Paths 
E ) P )
76adantlll 717 . . . . . . 7  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  F ( V Paths 
E ) P )
82, 3constr3cycllem1 24362 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( P `  0
)  =  ( P `
 ( # `  F
) ) )
98ad2antlr 726 . . . . . . 7  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( P ` 
0 )  =  ( P `  ( # `  F ) ) )
10 iscycl 24329 . . . . . . . 8  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( V Cycles  E ) P 
<->  ( F ( V Paths 
E ) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) ) ) )
1110ad3antrrr 729 . . . . . . 7  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( F ( V Cycles  E ) P  <-> 
( F ( V Paths 
E ) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) ) ) )
127, 9, 11mpbir2and 920 . . . . . 6  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  F ( V Cycles  E ) P )
132, 3constr3lem2 24350 . . . . . 6  |-  ( # `  F )  =  3
1412, 13jctir 538 . . . . 5  |-  ( ( ( ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  V USGrph  E )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( F ( V Cycles  E ) P  /\  ( # `  F
)  =  3 ) )
1514exp41 610 . . . 4  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( V USGrph  E  ->  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  (
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  ->  ( F
( V Cycles  E ) P  /\  ( # `  F
)  =  3 ) ) ) ) )
164, 15mpan2 671 . . 3  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( V USGrph  E  -> 
( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  (
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  ->  ( F
( V Cycles  E ) P  /\  ( # `  F
)  =  3 ) ) ) ) )
171, 16mpcom 36 . 2  |-  ( V USGrph  E  ->  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  (
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  ->  ( F
( V Cycles  E ) P  /\  ( # `  F
)  =  3 ) ) ) )
18173imp 1190 1  |-  ( ( V USGrph  E  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )  ->  ( F ( V Cycles  E
) P  /\  ( # `
 F )  =  3 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3113    u. cun 3474   {cpr 4029   {ctp 4031   <.cop 4033   class class class wbr 4447   `'ccnv 4998   ran crn 5000   ` cfv 5588  (class class class)co 6284   0cc0 9492   1c1 9493   2c2 10585   3c3 10586   #chash 12373   USGrph cusg 24034   Paths cpath 24204   Cycles ccycl 24211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-hash 12374  df-word 12508  df-usgra 24037  df-wlk 24212  df-trail 24213  df-pth 24214  df-cycl 24217
This theorem is referenced by:  constr3cyclp  24366  3v3e3cycl2  24368
  Copyright terms: Public domain W3C validator