MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  constr2wlk Structured version   Visualization version   Unicode version

Theorem constr2wlk 25407
Description: Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018.)
Hypotheses
Ref Expression
2trlY.i  |-  ( I  e.  U  /\  J  e.  W )
2trlY.f  |-  F  =  { <. 0 ,  I >. ,  <. 1 ,  J >. }
2trlY.p  |-  P  =  { <. 0 ,  A >. ,  <. 1 ,  B >. ,  <. 2 ,  C >. }
Assertion
Ref Expression
constr2wlk  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
)  ->  F ( V Walks  E ) P ) )

Proof of Theorem constr2wlk
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 df-3an 1009 . . . . . . . 8  |-  ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V )  <->  ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V ) )
2 2trlY.i . . . . . . . . 9  |-  ( I  e.  U  /\  J  e.  W )
3 2trlY.f . . . . . . . . 9  |-  F  =  { <. 0 ,  I >. ,  <. 1 ,  J >. }
42, 32trllemH 25361 . . . . . . . 8  |-  ( ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
51, 4sylanbr 481 . . . . . . 7  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  B  e.  V )  /\  (
( E `  I
)  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
6 iswrdi 12722 . . . . . . 7  |-  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  F  e. Word  dom  E )
75, 6syl 17 . . . . . 6  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  B  e.  V )  /\  (
( E `  I
)  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )  ->  F  e. Word  dom  E )
87ex 441 . . . . 5  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V )  ->  (
( ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } )  ->  F  e. Word  dom  E ) )
983ad2antr2 1196 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
)  ->  F  e. Word  dom 
E ) )
109imp 436 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F  e. Word  dom  E )
11 2trlY.p . . . . . 6  |-  P  =  { <. 0 ,  A >. ,  <. 1 ,  B >. ,  <. 2 ,  C >. }
12112trllemG 25367 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  P : ( 0 ... 2 ) --> V )
132, 32trllemA 25359 . . . . . . 7  |-  ( # `  F )  =  2
1413oveq2i 6319 . . . . . 6  |-  ( 0 ... ( # `  F
) )  =  ( 0 ... 2 )
1514feq2i 5731 . . . . 5  |-  ( P : ( 0 ... ( # `  F
) ) --> V  <->  P :
( 0 ... 2
) --> V )
1612, 15sylibr 217 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  P : ( 0 ... ( # `  F
) ) --> V )
1716ad2antlr 741 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  P : ( 0 ... ( # `  F
) ) --> V )
182, 3, 112wlklem1 25406 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  A. k  e.  { 0 ,  1 }  ( E `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
192, 32trllemB 25360 . . . . . 6  |-  ( 0..^ ( # `  F
) )  =  {
0 ,  1 }
2019a1i 11 . . . . 5  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  (
0..^ ( # `  F
) )  =  {
0 ,  1 } )
2120raleqdv 2979 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  A. k  e.  {
0 ,  1 }  ( E `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
2218, 21mpbird 240 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )
23 iswlkg 25331 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( F ( V Walks 
E ) P  <->  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
2423ad2antrr 740 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  ( F ( V Walks  E
) P  <->  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
2510, 17, 22, 24mpbir3and 1213 . 2  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F
( V Walks  E ) P )
2625ex 441 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
)  ->  F ( V Walks  E ) P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   A.wral 2756   {cpr 3961   {ctp 3963   <.cop 3965   class class class wbr 4395   dom cdm 4839   -->wf 5585   ` cfv 5589  (class class class)co 6308   0cc0 9557   1c1 9558    + caddc 9560   2c2 10681   ...cfz 11810  ..^cfzo 11942   #chash 12553  Word cword 12703   Walks cwalk 25305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-fzo 11943  df-hash 12554  df-word 12711  df-wlk 25315
This theorem is referenced by:  usgra2adedgwlk  25421  usgra2adedgwlkon  25422
  Copyright terms: Public domain W3C validator