MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  constr2wlk Structured version   Unicode version

Theorem constr2wlk 23648
Description: Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018.)
Hypotheses
Ref Expression
2trlY.i  |-  ( I  e.  U  /\  J  e.  W )
2trlY.f  |-  F  =  { <. 0 ,  I >. ,  <. 1 ,  J >. }
2trlY.p  |-  P  =  { <. 0 ,  A >. ,  <. 1 ,  B >. ,  <. 2 ,  C >. }
Assertion
Ref Expression
constr2wlk  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
)  ->  F ( V Walks  E ) P ) )

Proof of Theorem constr2wlk
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 df-3an 967 . . . . . . . 8  |-  ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V )  <->  ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V ) )
2 2trlY.i . . . . . . . . 9  |-  ( I  e.  U  /\  J  e.  W )
3 2trlY.f . . . . . . . . 9  |-  F  =  { <. 0 ,  I >. ,  <. 1 ,  J >. }
42, 32trllemH 23602 . . . . . . . 8  |-  ( ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
51, 4sylanbr 473 . . . . . . 7  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  B  e.  V )  /\  (
( E `  I
)  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
6 iswrdi 12356 . . . . . . 7  |-  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  F  e. Word  dom  E )
75, 6syl 16 . . . . . 6  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  B  e.  V )  /\  (
( E `  I
)  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )  ->  F  e. Word  dom  E )
87ex 434 . . . . 5  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V )  ->  (
( ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } )  ->  F  e. Word  dom  E ) )
983ad2antr2 1154 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
)  ->  F  e. Word  dom 
E ) )
109imp 429 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F  e. Word  dom  E )
11 2trlY.p . . . . . 6  |-  P  =  { <. 0 ,  A >. ,  <. 1 ,  B >. ,  <. 2 ,  C >. }
12112trllemG 23608 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  P : ( 0 ... 2 ) --> V )
132, 32trllemA 23600 . . . . . . 7  |-  ( # `  F )  =  2
1413oveq2i 6210 . . . . . 6  |-  ( 0 ... ( # `  F
) )  =  ( 0 ... 2 )
1514feq2i 5659 . . . . 5  |-  ( P : ( 0 ... ( # `  F
) ) --> V  <->  P :
( 0 ... 2
) --> V )
1612, 15sylibr 212 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  P : ( 0 ... ( # `  F
) ) --> V )
1716ad2antlr 726 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  P : ( 0 ... ( # `  F
) ) --> V )
182, 3, 112wlklem1 23647 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  A. k  e.  { 0 ,  1 }  ( E `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
192, 32trllemB 23601 . . . . . 6  |-  ( 0..^ ( # `  F
) )  =  {
0 ,  1 }
2019a1i 11 . . . . 5  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  (
0..^ ( # `  F
) )  =  {
0 ,  1 } )
2120raleqdv 3027 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  A. k  e.  {
0 ,  1 }  ( E `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
2218, 21mpbird 232 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )
23 prex 4641 . . . . . 6  |-  { <. 0 ,  I >. , 
<. 1 ,  J >. }  e.  _V
243, 23eqeltri 2538 . . . . 5  |-  F  e. 
_V
25 tpex 6488 . . . . . 6  |-  { <. 0 ,  A >. , 
<. 1 ,  B >. ,  <. 2 ,  C >. }  e.  _V
2611, 25eqeltri 2538 . . . . 5  |-  P  e. 
_V
27 iswlk 23577 . . . . 5  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  -> 
( F ( V Walks 
E ) P  <->  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
2824, 26, 27mpanr12 685 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( F ( V Walks 
E ) P  <->  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
2928ad2antrr 725 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  ( F ( V Walks  E
) P  <->  ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
3010, 17, 22, 29mpbir3and 1171 . 2  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F
( V Walks  E ) P )
3130ex 434 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
)  ->  F ( V Walks  E ) P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2798   _Vcvv 3076   {cpr 3986   {ctp 3988   <.cop 3990   class class class wbr 4399   dom cdm 4947   -->wf 5521   ` cfv 5525  (class class class)co 6199   0cc0 9392   1c1 9393    + caddc 9395   2c2 10481   ...cfz 11553  ..^cfzo 11664   #chash 12219  Word cword 12338   Walks cwalk 23556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-1o 7029  df-oadd 7033  df-er 7210  df-map 7325  df-pm 7326  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-card 8219  df-cda 8447  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-nn 10433  df-2 10490  df-n0 10690  df-z 10757  df-uz 10972  df-fz 11554  df-fzo 11665  df-hash 12220  df-word 12346  df-wlk 23566
This theorem is referenced by:  usgra2adedgwlk  30453  usgra2adedgwlkon  30454
  Copyright terms: Public domain W3C validator