Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constmap Structured version   Unicode version

Theorem constmap 30476
Description: A constant (represented without dummy variables) is an element of a function set.

_Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets._ (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.)

Hypotheses
Ref Expression
constmap.1  |-  A  e. 
_V
constmap.3  |-  C  e. 
_V
Assertion
Ref Expression
constmap  |-  ( B  e.  C  ->  ( A  X.  { B }
)  e.  ( C  ^m  A ) )

Proof of Theorem constmap
StepHypRef Expression
1 fconst6g 5774 . 2  |-  ( B  e.  C  ->  ( A  X.  { B }
) : A --> C )
2 constmap.3 . . 3  |-  C  e. 
_V
3 constmap.1 . . 3  |-  A  e. 
_V
42, 3elmap 7448 . 2  |-  ( ( A  X.  { B } )  e.  ( C  ^m  A )  <-> 
( A  X.  { B } ) : A --> C )
51, 4sylibr 212 1  |-  ( B  e.  C  ->  ( A  X.  { B }
)  e.  ( C  ^m  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1767   _Vcvv 3113   {csn 4027    X. cxp 4997   -->wf 5584  (class class class)co 6285    ^m cmap 7421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-fv 5596  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-map 7423
This theorem is referenced by:  mzpclall  30490  mzpindd  30509
  Copyright terms: Public domain W3C validator