MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjnmzb Structured version   Unicode version

Theorem conjnmzb 15772
Description: Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjsubg.f  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
conjnmz.1  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
Assertion
Ref Expression
conjnmzb  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  N  <->  ( A  e.  X  /\  S  =  ran  F ) ) )
Distinct variable groups:    x, y,  .-    x, z,  .+ , y    x, A, y, z    y, F, z    x, N    x, G, y, z    x, S, y, z    x, X, y, z
Allowed substitution hints:    F( x)    .- ( z)    N( y, z)

Proof of Theorem conjnmzb
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 conjnmz.1 . . . . 5  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
2 ssrab2 3432 . . . . 5  |-  { y  e.  X  |  A. z  e.  X  (
( y  .+  z
)  e.  S  <->  ( z  .+  y )  e.  S
) }  C_  X
31, 2eqsstri 3381 . . . 4  |-  N  C_  X
4 simpr 461 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  A  e.  N )
53, 4sseldi 3349 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  A  e.  X )
6 conjghm.x . . . 4  |-  X  =  ( Base `  G
)
7 conjghm.p . . . 4  |-  .+  =  ( +g  `  G )
8 conjghm.m . . . 4  |-  .-  =  ( -g `  G )
9 conjsubg.f . . . 4  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
106, 7, 8, 9, 1conjnmz 15771 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
115, 10jca 532 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  ( A  e.  X  /\  S  =  ran  F ) )
12 simprl 755 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  ->  A  e.  X )
13 simplrr 760 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  S  =  ran  F )
1413eleq2d 2505 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  S  <->  ( A  .+  w )  e.  ran  F ) )
15 subgrcl 15677 . . . . . . . . . . . . 13  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1615ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  G  e.  Grp )
17 simpllr 758 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  A  e.  X )
186subgss 15673 . . . . . . . . . . . . . 14  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
1918ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  /\  w  e.  X )  ->  S  C_  X )
2019sselda 3351 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  x  e.  X )
216, 7, 8grpaddsubass 15606 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  x  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
2216, 17, 20, 17, 21syl13anc 1220 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
2322eqeq1d 2446 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( ( A  .+  x )  .-  A
)  =  ( A 
.+  w )  <->  ( A  .+  ( x  .-  A
) )  =  ( A  .+  w ) ) )
246, 8grpsubcl 15597 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  A  e.  X )  ->  ( x  .-  A
)  e.  X )
2516, 20, 17, 24syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
x  .-  A )  e.  X )
26 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  w  e.  X )
276, 7grplcan 15581 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( ( x  .-  A )  e.  X  /\  w  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  (
x  .-  A )
)  =  ( A 
.+  w )  <->  ( x  .-  A )  =  w ) )
2816, 25, 26, 17, 27syl13anc 1220 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( A  .+  (
x  .-  A )
)  =  ( A 
.+  w )  <->  ( x  .-  A )  =  w ) )
296, 7, 8grpsubadd 15604 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( x  e.  X  /\  A  e.  X  /\  w  e.  X
) )  ->  (
( x  .-  A
)  =  w  <->  ( w  .+  A )  =  x ) )
3016, 20, 17, 26, 29syl13anc 1220 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( x  .-  A
)  =  w  <->  ( w  .+  A )  =  x ) )
3123, 28, 303bitrd 279 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( ( A  .+  x )  .-  A
)  =  ( A 
.+  w )  <->  ( w  .+  A )  =  x ) )
32 eqcom 2440 . . . . . . . . 9  |-  ( ( A  .+  w )  =  ( ( A 
.+  x )  .-  A )  <->  ( ( A  .+  x )  .-  A )  =  ( A  .+  w ) )
33 eqcom 2440 . . . . . . . . 9  |-  ( x  =  ( w  .+  A )  <->  ( w  .+  A )  =  x )
3431, 32, 333bitr4g 288 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( A  .+  w
)  =  ( ( A  .+  x ) 
.-  A )  <->  x  =  ( w  .+  A ) ) )
3534rexbidva 2727 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  /\  w  e.  X )  ->  ( E. x  e.  S  ( A  .+  w )  =  ( ( A 
.+  x )  .-  A )  <->  E. x  e.  S  x  =  ( w  .+  A ) ) )
3635adantlrr 720 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  ( E. x  e.  S  ( A  .+  w )  =  ( ( A 
.+  x )  .-  A )  <->  E. x  e.  S  x  =  ( w  .+  A ) ) )
37 ovex 6111 . . . . . . 7  |-  ( A 
.+  w )  e. 
_V
38 eqeq1 2444 . . . . . . . 8  |-  ( y  =  ( A  .+  w )  ->  (
y  =  ( ( A  .+  x ) 
.-  A )  <->  ( A  .+  w )  =  ( ( A  .+  x
)  .-  A )
) )
3938rexbidv 2731 . . . . . . 7  |-  ( y  =  ( A  .+  w )  ->  ( E. x  e.  S  y  =  ( ( A  .+  x )  .-  A )  <->  E. x  e.  S  ( A  .+  w )  =  ( ( A  .+  x
)  .-  A )
) )
409rnmpt 5080 . . . . . . 7  |-  ran  F  =  { y  |  E. x  e.  S  y  =  ( ( A 
.+  x )  .-  A ) }
4137, 39, 40elab2 3104 . . . . . 6  |-  ( ( A  .+  w )  e.  ran  F  <->  E. x  e.  S  ( A  .+  w )  =  ( ( A  .+  x
)  .-  A )
)
42 risset 2758 . . . . . 6  |-  ( ( w  .+  A )  e.  S  <->  E. x  e.  S  x  =  ( w  .+  A ) )
4336, 41, 423bitr4g 288 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  ran  F  <->  ( w  .+  A )  e.  S ) )
4414, 43bitrd 253 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  S  <->  ( w  .+  A )  e.  S
) )
4544ralrimiva 2794 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  ->  A. w  e.  X  ( ( A  .+  w )  e.  S  <->  ( w  .+  A )  e.  S
) )
461elnmz 15711 . . 3  |-  ( A  e.  N  <->  ( A  e.  X  /\  A. w  e.  X  ( ( A  .+  w )  e.  S  <->  ( w  .+  A )  e.  S
) ) )
4712, 45, 46sylanbrc 664 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  ->  A  e.  N )
4811, 47impbida 828 1  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  N  <->  ( A  e.  X  /\  S  =  ran  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   E.wrex 2711   {crab 2714    C_ wss 3323    e. cmpt 4345   ran crn 4836   ` cfv 5413  (class class class)co 6086   Basecbs 14166   +g cplusg 14230   Grpcgrp 15402   -gcsg 15405  SubGrpcsubg 15666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-1st 6572  df-2nd 6573  df-0g 14372  df-mnd 15407  df-grp 15536  df-minusg 15537  df-sbg 15538  df-subg 15669
This theorem is referenced by:  sylow3lem6  16122
  Copyright terms: Public domain W3C validator