Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conimpf Structured version   Unicode version

Theorem conimpf 38376
Description: Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016.)
Hypotheses
Ref Expression
conimpf.1  |-  ph
conimpf.2  |-  -.  ps
conimpf.3  |-  ( ph  ->  ps )
Assertion
Ref Expression
conimpf  |-  ( ph  <-> F.  )

Proof of Theorem conimpf
StepHypRef Expression
1 conimpf.3 . 2  |-  ( ph  ->  ps )
2 conimpf.2 . 2  |-  -.  ps
31, 2aibnbaif 38365 1  |-  ( ph  <-> F.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187   F. wfal 1442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-tru 1440  df-fal 1443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator