MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  concompid Structured version   Unicode version

Theorem concompid 18877
Description: The connected component containing  A contains  A. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
concomp.2  |-  S  = 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }
Assertion
Ref Expression
concompid  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  S )
Distinct variable groups:    x, A    x, J    x, X
Allowed substitution hint:    S( x)

Proof of Theorem concompid
StepHypRef Expression
1 simpr 458 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  X )
21snssd 4006 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  { A }  C_  X )
3 snex 4521 . . . . . 6  |-  { A }  e.  _V
43elpw 3854 . . . . 5  |-  ( { A }  e.  ~P X 
<->  { A }  C_  X )
52, 4sylibr 212 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  { A }  e.  ~P X
)
6 snidg 3891 . . . . 5  |-  ( A  e.  X  ->  A  e.  { A } )
76adantl 463 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  { A } )
8 restsn2 18617 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  { A } )  =  ~P { A }
)
9 pwsn 4073 . . . . . . 7  |-  ~P { A }  =  { (/)
,  { A } }
10 indiscon 18864 . . . . . . 7  |-  { (/) ,  { A } }  e.  Con
119, 10eqeltri 2503 . . . . . 6  |-  ~P { A }  e.  Con
128, 11syl6eqel 2521 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  { A } )  e. 
Con )
137, 12jca 529 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( A  e.  { A }  /\  ( Jt  { A } )  e.  Con ) )
14 eleq2 2494 . . . . . 6  |-  ( x  =  { A }  ->  ( A  e.  x  <->  A  e.  { A }
) )
15 oveq2 6088 . . . . . . . 8  |-  ( x  =  { A }  ->  ( Jt  x )  =  ( Jt  { A } ) )
1615eleq1d 2499 . . . . . . 7  |-  ( x  =  { A }  ->  ( ( Jt  x )  e.  Con  <->  ( Jt  { A } )  e.  Con ) )
1714, 16anbi12d 703 . . . . . 6  |-  ( x  =  { A }  ->  ( ( A  e.  x  /\  ( Jt  x )  e.  Con )  <->  ( A  e.  { A }  /\  ( Jt  { A } )  e.  Con ) ) )
1814, 17anbi12d 703 . . . . 5  |-  ( x  =  { A }  ->  ( ( A  e.  x  /\  ( A  e.  x  /\  ( Jt  x )  e.  Con ) )  <->  ( A  e.  { A }  /\  ( A  e.  { A }  /\  ( Jt  { A } )  e.  Con ) ) ) )
1918rspcev 3062 . . . 4  |-  ( ( { A }  e.  ~P X  /\  ( A  e.  { A }  /\  ( A  e. 
{ A }  /\  ( Jt  { A } )  e.  Con ) ) )  ->  E. x  e.  ~P  X ( A  e.  x  /\  ( A  e.  x  /\  ( Jt  x )  e.  Con ) ) )
205, 7, 13, 19syl12anc 1209 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  E. x  e.  ~P  X ( A  e.  x  /\  ( A  e.  x  /\  ( Jt  x )  e.  Con ) ) )
21 elunirab 4091 . . 3  |-  ( A  e.  U. { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }  <->  E. x  e.  ~P  X ( A  e.  x  /\  ( A  e.  x  /\  ( Jt  x )  e.  Con ) ) )
2220, 21sylibr 212 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) } )
23 concomp.2 . 2  |-  S  = 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }
2422, 23syl6eleqr 2524 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   E.wrex 2706   {crab 2709    C_ wss 3316   (/)c0 3625   ~Pcpw 3848   {csn 3865   {cpr 3867   U.cuni 4079   ` cfv 5406  (class class class)co 6080   ↾t crest 14342  TopOnctopon 18341   Conccon 18857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-oadd 6912  df-er 7089  df-en 7299  df-fin 7302  df-fi 7649  df-rest 14344  df-topgen 14365  df-top 18345  df-bases 18347  df-topon 18348  df-cld 18465  df-con 18858
This theorem is referenced by:  concompcld  18880  concompclo  18881  tgpconcompeqg  19524  tgpconcomp  19525
  Copyright terms: Public domain W3C validator