MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  concompcld Structured version   Unicode version

Theorem concompcld 20061
Description: The connected component containing  A is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
concomp.2  |-  S  = 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }
Assertion
Ref Expression
concompcld  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  S  e.  ( Clsd `  J
) )
Distinct variable groups:    x, A    x, J    x, X
Allowed substitution hint:    S( x)

Proof of Theorem concompcld
StepHypRef Expression
1 topontop 19554 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
21adantr 465 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  J  e.  Top )
3 concomp.2 . . . . . . 7  |-  S  = 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }
4 ssrab2 3581 . . . . . . . 8  |-  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }  C_  ~P X
5 sspwuni 4421 . . . . . . . 8  |-  ( { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }  C_  ~P X  <->  U. { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }  C_  X )
64, 5mpbi 208 . . . . . . 7  |-  U. {
x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }  C_  X
73, 6eqsstri 3529 . . . . . 6  |-  S  C_  X
8 toponuni 19555 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
98adantr 465 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  X  =  U. J )
107, 9syl5sseq 3547 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  S  C_ 
U. J )
11 eqid 2457 . . . . . 6  |-  U. J  =  U. J
1211clsss3 19687 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  C_  U. J )
132, 10, 12syl2anc 661 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  (
( cls `  J
) `  S )  C_ 
U. J )
1413, 9sseqtr4d 3536 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  (
( cls `  J
) `  S )  C_  X )
1511sscls 19684 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  S  C_  (
( cls `  J
) `  S )
)
162, 10, 15syl2anc 661 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  S  C_  ( ( cls `  J
) `  S )
)
173concompid 20058 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  S )
1816, 17sseldd 3500 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  ( ( cls `  J
) `  S )
)
19 simpl 457 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  J  e.  (TopOn `  X )
)
207a1i 11 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  S  C_  X )
213concompcon 20059 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  S )  e.  Con )
22 clscon 20057 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  ( Jt  S )  e.  Con )  ->  ( Jt  ( ( cls `  J ) `  S
) )  e.  Con )
2319, 20, 21, 22syl3anc 1228 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  ( ( cls `  J
) `  S )
)  e.  Con )
243concompss 20060 . . 3  |-  ( ( ( ( cls `  J
) `  S )  C_  X  /\  A  e.  ( ( cls `  J
) `  S )  /\  ( Jt  ( ( cls `  J ) `  S
) )  e.  Con )  ->  ( ( cls `  J ) `  S
)  C_  S )
2514, 18, 23, 24syl3anc 1228 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  (
( cls `  J
) `  S )  C_  S )
2611iscld4 19693 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( S  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  S
)  C_  S )
)
272, 10, 26syl2anc 661 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( S  e.  ( Clsd `  J )  <->  ( ( cls `  J ) `  S )  C_  S
) )
2825, 27mpbird 232 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  S  e.  ( Clsd `  J
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   {crab 2811    C_ wss 3471   ~Pcpw 4015   U.cuni 4251   ` cfv 5594  (class class class)co 6296   ↾t crest 14838   Topctop 19521  TopOnctopon 19522   Clsdccld 19644   clsccl 19646   Conccon 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-oadd 7152  df-er 7329  df-en 7536  df-fin 7539  df-fi 7889  df-rest 14840  df-topgen 14861  df-top 19526  df-bases 19528  df-topon 19529  df-cld 19647  df-ntr 19648  df-cls 19649  df-con 20039
This theorem is referenced by:  concompclo  20062
  Copyright terms: Public domain W3C validator