MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3 Structured version   Unicode version

Theorem con3 134
Description: Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. This was the fourth axiom of Frege, specifically Proposition 28 of [Frege1879] p. 43. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 13-Feb-2013.)
Assertion
Ref Expression
con3  |-  ( (
ph  ->  ps )  -> 
( -.  ps  ->  -. 
ph ) )

Proof of Theorem con3
StepHypRef Expression
1 id 22 . 2  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ps )
)
21con3d 133 1  |-  ( (
ph  ->  ps )  -> 
( -.  ps  ->  -. 
ph ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.65  172  con34b  292  nic-ax  1481  nic-axALT  1482  eximOLD  1625  axc10  1949  ax12indn  2250  rexim  2902  ralf0  3870  dfon2lem9  27724  hbntg  27739  naim1  28351  naim2  28352  lukshef-ax2  28381  vk15.4j  31515  tratrb  31524  hbntal  31544  tratrbVD  31879  con5VD  31918  vk15.4jVD  31932  bj-axc10v  32495  cvrexchlem  33345  cvratlem  33347
  Copyright terms: Public domain W3C validator