MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con1b Structured version   Visualization version   Unicode version

Theorem con1b 335
Description: Contraposition. Bidirectional version of con1 132. (Contributed by NM, 3-Jan-1993.)
Assertion
Ref Expression
con1b  |-  ( ( -.  ph  ->  ps )  <->  ( -.  ps  ->  ph )
)

Proof of Theorem con1b
StepHypRef Expression
1 con1 132 . 2  |-  ( ( -.  ph  ->  ps )  ->  ( -.  ps  ->  ph ) )
2 con1 132 . 2  |-  ( ( -.  ps  ->  ph )  ->  ( -.  ph  ->  ps ) )
31, 2impbii 191 1  |-  ( ( -.  ph  ->  ps )  <->  ( -.  ps  ->  ph )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189
This theorem is referenced by:  eximal  1666  r19.23v  2867  pwssun  4740  ist1-2  20363  cmpfi  20423  dchrelbas2  24165
  Copyright terms: Public domain W3C validator