MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compssiso Structured version   Visualization version   Unicode version

Theorem compssiso 8822
Description: Complementation is an antiautomorphism on power set lattices. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
Assertion
Ref Expression
compssiso  |-  ( A  e.  V  ->  F  Isom [
C.]  ,  `' [ C.]  ( ~P A ,  ~P A
) )
Distinct variable groups:    x, A    x, V
Allowed substitution hint:    F( x)

Proof of Theorem compssiso
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difexg 4545 . . . . 5  |-  ( A  e.  V  ->  ( A  \  x )  e. 
_V )
21ralrimivw 2810 . . . 4  |-  ( A  e.  V  ->  A. x  e.  ~P  A ( A 
\  x )  e. 
_V )
3 compss.a . . . . 5  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
43fnmpt 5714 . . . 4  |-  ( A. x  e.  ~P  A
( A  \  x
)  e.  _V  ->  F  Fn  ~P A )
52, 4syl 17 . . 3  |-  ( A  e.  V  ->  F  Fn  ~P A )
63compsscnv 8819 . . . . 5  |-  `' F  =  F
76fneq1i 5680 . . . 4  |-  ( `' F  Fn  ~P A  <->  F  Fn  ~P A )
85, 7sylibr 217 . . 3  |-  ( A  e.  V  ->  `' F  Fn  ~P A
)
9 dff1o4 5836 . . 3  |-  ( F : ~P A -1-1-onto-> ~P A  <->  ( F  Fn  ~P A  /\  `' F  Fn  ~P A ) )
105, 8, 9sylanbrc 677 . 2  |-  ( A  e.  V  ->  F : ~P A -1-1-onto-> ~P A )
11 elpwi 3951 . . . . . . . . 9  |-  ( b  e.  ~P A  -> 
b  C_  A )
1211ad2antll 743 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
b  C_  A )
133isf34lem1 8820 . . . . . . . 8  |-  ( ( A  e.  V  /\  b  C_  A )  -> 
( F `  b
)  =  ( A 
\  b ) )
1412, 13syldan 478 . . . . . . 7  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( F `  b
)  =  ( A 
\  b ) )
15 elpwi 3951 . . . . . . . . 9  |-  ( a  e.  ~P A  -> 
a  C_  A )
1615ad2antrl 742 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
a  C_  A )
173isf34lem1 8820 . . . . . . . 8  |-  ( ( A  e.  V  /\  a  C_  A )  -> 
( F `  a
)  =  ( A 
\  a ) )
1816, 17syldan 478 . . . . . . 7  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( F `  a
)  =  ( A 
\  a ) )
1914, 18psseq12d 3513 . . . . . 6  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( ( F `  b )  C.  ( F `  a )  <->  ( A  \  b ) 
C.  ( A  \ 
a ) ) )
20 difss 3549 . . . . . . 7  |-  ( A 
\  a )  C_  A
21 pssdifcom1 3844 . . . . . . 7  |-  ( ( b  C_  A  /\  ( A  \  a
)  C_  A )  ->  ( ( A  \ 
b )  C.  ( A  \  a )  <->  ( A  \  ( A  \  a
) )  C.  b
) )
2212, 20, 21sylancl 675 . . . . . 6  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( ( A  \ 
b )  C.  ( A  \  a )  <->  ( A  \  ( A  \  a
) )  C.  b
) )
23 dfss4 3668 . . . . . . . 8  |-  ( a 
C_  A  <->  ( A  \  ( A  \  a
) )  =  a )
2416, 23sylib 201 . . . . . . 7  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( A  \  ( A  \  a ) )  =  a )
2524psseq1d 3511 . . . . . 6  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( ( A  \ 
( A  \  a
) )  C.  b  <->  a 
C.  b ) )
2619, 22, 253bitrrd 288 . . . . 5  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( a  C.  b  <->  ( F `  b ) 
C.  ( F `  a ) ) )
27 vex 3034 . . . . . 6  |-  b  e. 
_V
2827brrpss 6593 . . . . 5  |-  ( a [ C.]  b  <->  a  C.  b
)
29 fvex 5889 . . . . . 6  |-  ( F `
 a )  e. 
_V
3029brrpss 6593 . . . . 5  |-  ( ( F `  b ) [ C.]  ( F `  a
)  <->  ( F `  b )  C.  ( F `  a )
)
3126, 28, 303bitr4g 296 . . . 4  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( a [ C.]  b  <->  ( F `  b ) [ C.]  ( F `  a
) ) )
32 relrpss 6591 . . . . 5  |-  Rel [ C.]
3332relbrcnv 5216 . . . 4  |-  ( ( F `  a ) `' [ C.]  ( F `  b )  <->  ( F `  b ) [ C.]  ( F `  a )
)
3431, 33syl6bbr 271 . . 3  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( a [ C.]  b  <->  ( F `  a ) `' [ C.]  ( F `  b ) ) )
3534ralrimivva 2814 . 2  |-  ( A  e.  V  ->  A. a  e.  ~P  A A. b  e.  ~P  A ( a [ C.]  b  <->  ( F `  a ) `' [ C.]  ( F `  b )
) )
36 df-isom 5598 . 2  |-  ( F 
Isom [ C.]  ,  `' [ C.]  ( ~P A ,  ~P A
)  <->  ( F : ~P A -1-1-onto-> ~P A  /\  A. a  e.  ~P  A A. b  e.  ~P  A ( a [ C.]  b 
<->  ( F `  a
) `' [ C.]  ( F `  b )
) ) )
3710, 35, 36sylanbrc 677 1  |-  ( A  e.  V  ->  F  Isom [
C.]  ,  `' [ C.]  ( ~P A ,  ~P A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   _Vcvv 3031    \ cdif 3387    C_ wss 3390    C. wpss 3391   ~Pcpw 3942   class class class wbr 4395    |-> cmpt 4454   `'ccnv 4838    Fn wfn 5584   -1-1-onto->wf1o 5588   ` cfv 5589    Isom wiso 5590   [ C.] crpss 6589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-rpss 6590
This theorem is referenced by:  isf34lem3  8823  isf34lem5  8826  isfin1-4  8835
  Copyright terms: Public domain W3C validator