MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compssiso Structured version   Unicode version

Theorem compssiso 8745
Description: Complementation is an antiautomorphism on power set lattices. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
Assertion
Ref Expression
compssiso  |-  ( A  e.  V  ->  F  Isom [
C.]  ,  `' [ C.]  ( ~P A ,  ~P A
) )
Distinct variable groups:    x, A    x, V
Allowed substitution hint:    F( x)

Proof of Theorem compssiso
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difexg 4585 . . . . 5  |-  ( A  e.  V  ->  ( A  \  x )  e. 
_V )
21ralrimivw 2869 . . . 4  |-  ( A  e.  V  ->  A. x  e.  ~P  A ( A 
\  x )  e. 
_V )
3 compss.a . . . . 5  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
43fnmpt 5689 . . . 4  |-  ( A. x  e.  ~P  A
( A  \  x
)  e.  _V  ->  F  Fn  ~P A )
52, 4syl 16 . . 3  |-  ( A  e.  V  ->  F  Fn  ~P A )
63compsscnv 8742 . . . . 5  |-  `' F  =  F
76fneq1i 5657 . . . 4  |-  ( `' F  Fn  ~P A  <->  F  Fn  ~P A )
85, 7sylibr 212 . . 3  |-  ( A  e.  V  ->  `' F  Fn  ~P A
)
9 dff1o4 5806 . . 3  |-  ( F : ~P A -1-1-onto-> ~P A  <->  ( F  Fn  ~P A  /\  `' F  Fn  ~P A ) )
105, 8, 9sylanbrc 662 . 2  |-  ( A  e.  V  ->  F : ~P A -1-1-onto-> ~P A )
11 elpwi 4008 . . . . . . . . 9  |-  ( b  e.  ~P A  -> 
b  C_  A )
1211ad2antll 726 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
b  C_  A )
133isf34lem1 8743 . . . . . . . 8  |-  ( ( A  e.  V  /\  b  C_  A )  -> 
( F `  b
)  =  ( A 
\  b ) )
1412, 13syldan 468 . . . . . . 7  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( F `  b
)  =  ( A 
\  b ) )
15 elpwi 4008 . . . . . . . . 9  |-  ( a  e.  ~P A  -> 
a  C_  A )
1615ad2antrl 725 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
a  C_  A )
173isf34lem1 8743 . . . . . . . 8  |-  ( ( A  e.  V  /\  a  C_  A )  -> 
( F `  a
)  =  ( A 
\  a ) )
1816, 17syldan 468 . . . . . . 7  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( F `  a
)  =  ( A 
\  a ) )
1914, 18psseq12d 3584 . . . . . 6  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( ( F `  b )  C.  ( F `  a )  <->  ( A  \  b ) 
C.  ( A  \ 
a ) ) )
20 difss 3617 . . . . . . 7  |-  ( A 
\  a )  C_  A
21 pssdifcom1 3901 . . . . . . 7  |-  ( ( b  C_  A  /\  ( A  \  a
)  C_  A )  ->  ( ( A  \ 
b )  C.  ( A  \  a )  <->  ( A  \  ( A  \  a
) )  C.  b
) )
2212, 20, 21sylancl 660 . . . . . 6  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( ( A  \ 
b )  C.  ( A  \  a )  <->  ( A  \  ( A  \  a
) )  C.  b
) )
23 dfss4 3729 . . . . . . . 8  |-  ( a 
C_  A  <->  ( A  \  ( A  \  a
) )  =  a )
2416, 23sylib 196 . . . . . . 7  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( A  \  ( A  \  a ) )  =  a )
2524psseq1d 3582 . . . . . 6  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( ( A  \ 
( A  \  a
) )  C.  b  <->  a 
C.  b ) )
2619, 22, 253bitrrd 280 . . . . 5  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( a  C.  b  <->  ( F `  b ) 
C.  ( F `  a ) ) )
27 vex 3109 . . . . . 6  |-  b  e. 
_V
2827brrpss 6556 . . . . 5  |-  ( a [ C.]  b  <->  a  C.  b
)
29 fvex 5858 . . . . . 6  |-  ( F `
 a )  e. 
_V
3029brrpss 6556 . . . . 5  |-  ( ( F `  b ) [ C.]  ( F `  a
)  <->  ( F `  b )  C.  ( F `  a )
)
3126, 28, 303bitr4g 288 . . . 4  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( a [ C.]  b  <->  ( F `  b ) [ C.]  ( F `  a
) ) )
32 relrpss 6554 . . . . 5  |-  Rel [ C.]
3332relbrcnv 5365 . . . 4  |-  ( ( F `  a ) `' [ C.]  ( F `  b )  <->  ( F `  b ) [ C.]  ( F `  a )
)
3431, 33syl6bbr 263 . . 3  |-  ( ( A  e.  V  /\  ( a  e.  ~P A  /\  b  e.  ~P A ) )  -> 
( a [ C.]  b  <->  ( F `  a ) `' [ C.]  ( F `  b ) ) )
3534ralrimivva 2875 . 2  |-  ( A  e.  V  ->  A. a  e.  ~P  A A. b  e.  ~P  A ( a [ C.]  b  <->  ( F `  a ) `' [ C.]  ( F `  b )
) )
36 df-isom 5579 . 2  |-  ( F 
Isom [ C.]  ,  `' [ C.]  ( ~P A ,  ~P A
)  <->  ( F : ~P A -1-1-onto-> ~P A  /\  A. a  e.  ~P  A A. b  e.  ~P  A ( a [ C.]  b 
<->  ( F `  a
) `' [ C.]  ( F `  b )
) ) )
3710, 35, 36sylanbrc 662 1  |-  ( A  e.  V  ->  F  Isom [
C.]  ,  `' [ C.]  ( ~P A ,  ~P A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   _Vcvv 3106    \ cdif 3458    C_ wss 3461    C. wpss 3462   ~Pcpw 3999   class class class wbr 4439    |-> cmpt 4497   `'ccnv 4987    Fn wfn 5565   -1-1-onto->wf1o 5569   ` cfv 5570    Isom wiso 5571   [ C.] crpss 6552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-rpss 6553
This theorem is referenced by:  isf34lem3  8746  isf34lem5  8749  isfin1-4  8758
  Copyright terms: Public domain W3C validator