Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  comppfsc Structured version   Unicode version

Theorem comppfsc 29807
Description: A space where every open cover has a point-finite subcover is compact. This is significant in part because it shows half of the proposition that if only half the generalization in the definition of metacompactness (and consequently paracompactness) is performed, one does not obtain any more spaces. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
comppfsc.1  |-  X  = 
U. J
Assertion
Ref Expression
comppfsc  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) ) ) )
Distinct variable groups:    c, d, J    X, c, d

Proof of Theorem comppfsc
Dummy variables  a 
b  f  p  q  s  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4019 . . . 4  |-  ( c  e.  ~P J  -> 
c  C_  J )
2 comppfsc.1 . . . . . . 7  |-  X  = 
U. J
32cmpcov 19683 . . . . . 6  |-  ( ( J  e.  Comp  /\  c  C_  J  /\  X  = 
U. c )  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)
4 elfpw 7822 . . . . . . . 8  |-  ( d  e.  ( ~P c  i^i  Fin )  <->  ( d  C_  c  /\  d  e. 
Fin ) )
5 finptfin 29797 . . . . . . . . . . 11  |-  ( d  e.  Fin  ->  d  e.  PtFin )
65anim1i 568 . . . . . . . . . 10  |-  ( ( d  e.  Fin  /\  ( d  C_  c  /\  X  =  U. d ) )  -> 
( d  e.  PtFin  /\  ( d  C_  c  /\  X  =  U. d ) ) )
76anassrs 648 . . . . . . . . 9  |-  ( ( ( d  e.  Fin  /\  d  C_  c )  /\  X  =  U. d )  ->  (
d  e.  PtFin  /\  (
d  C_  c  /\  X  =  U. d
) ) )
87ancom1s 803 . . . . . . . 8  |-  ( ( ( d  C_  c  /\  d  e.  Fin )  /\  X  =  U. d )  ->  (
d  e.  PtFin  /\  (
d  C_  c  /\  X  =  U. d
) ) )
94, 8sylanb 472 . . . . . . 7  |-  ( ( d  e.  ( ~P c  i^i  Fin )  /\  X  =  U. d )  ->  (
d  e.  PtFin  /\  (
d  C_  c  /\  X  =  U. d
) ) )
109reximi2 2931 . . . . . 6  |-  ( E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d
) )
113, 10syl 16 . . . . 5  |-  ( ( J  e.  Comp  /\  c  C_  J  /\  X  = 
U. c )  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )
12113exp 1195 . . . 4  |-  ( J  e.  Comp  ->  ( c 
C_  J  ->  ( X  =  U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d
) ) ) )
131, 12syl5 32 . . 3  |-  ( J  e.  Comp  ->  ( c  e.  ~P J  -> 
( X  =  U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d
) ) ) )
1413ralrimiv 2876 . 2  |-  ( J  e.  Comp  ->  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) ) )
15 elpwi 4019 . . . . . . 7  |-  ( a  e.  ~P J  -> 
a  C_  J )
16 0elpw 4616 . . . . . . . . . . 11  |-  (/)  e.  ~P a
17 0fin 7747 . . . . . . . . . . 11  |-  (/)  e.  Fin
18 elin 3687 . . . . . . . . . . 11  |-  ( (/)  e.  ( ~P a  i^i 
Fin )  <->  ( (/)  e.  ~P a  /\  (/)  e.  Fin )
)
1916, 17, 18mpbir2an 918 . . . . . . . . . 10  |-  (/)  e.  ( ~P a  i^i  Fin )
20 unieq 4253 . . . . . . . . . . . . 13  |-  ( b  =  (/)  ->  U. b  =  U. (/) )
21 uni0 4272 . . . . . . . . . . . . 13  |-  U. (/)  =  (/)
2220, 21syl6eq 2524 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  U. b  =  (/) )
2322eqeq2d 2481 . . . . . . . . . . 11  |-  ( b  =  (/)  ->  ( X  =  U. b  <->  X  =  (/) ) )
2423rspcev 3214 . . . . . . . . . 10  |-  ( (
(/)  e.  ( ~P a  i^i  Fin )  /\  X  =  (/) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
)
2519, 24mpan 670 . . . . . . . . 9  |-  ( X  =  (/)  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b )
2625a1i13 29718 . . . . . . . 8  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( X  =  (/)  ->  ( A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b ) ) )
27 n0 3794 . . . . . . . . 9  |-  ( X  =/=  (/)  <->  E. x  x  e.  X )
28 simp2 997 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  X  =  U. a )
2928eleq2d 2537 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( x  e.  X  <->  x  e.  U. a
) )
3029biimpd 207 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( x  e.  X  ->  x  e.  U. a ) )
31 eluni2 4249 . . . . . . . . . . . 12  |-  ( x  e.  U. a  <->  E. s  e.  a  x  e.  s )
3230, 31syl6ib 226 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( x  e.  X  ->  E. s  e.  a  x  e.  s ) )
33 simpl3 1001 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
a  C_  J )
34 simprl 755 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
s  e.  a )
3533, 34sseldd 3505 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
s  e.  J )
36 elssuni 4275 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  e.  J  ->  s  C_ 
U. J )
3736, 2syl6sseqr 3551 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  e.  J  ->  s  C_  X )
3835, 37syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
s  C_  X )
3938ralrimivw 2879 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  A. p  e.  a 
s  C_  X )
40 iunss 4366 . . . . . . . . . . . . . . . . . 18  |-  ( U_ p  e.  a  s  C_  X  <->  A. p  e.  a  s  C_  X )
4139, 40sylibr 212 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  U_ p  e.  a 
s  C_  X )
42 ssequn1 3674 . . . . . . . . . . . . . . . . 17  |-  ( U_ p  e.  a  s  C_  X  <->  ( U_ p  e.  a  s  u.  X )  =  X )
4341, 42sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( U_ p  e.  a  s  u.  X )  =  X )
44 simpl2 1000 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  X  =  U. a
)
45 uniiun 4378 . . . . . . . . . . . . . . . . . 18  |-  U. a  =  U_ p  e.  a  p
4644, 45syl6eq 2524 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  X  =  U_ p  e.  a  p )
4746uneq2d 3658 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( U_ p  e.  a  s  u.  X )  =  ( U_ p  e.  a  s  u.  U_ p  e.  a  p ) )
4843, 47eqtr3d 2510 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  X  =  ( U_ p  e.  a  s  u.  U_ p  e.  a  p ) )
49 iunun 4406 . . . . . . . . . . . . . . . 16  |-  U_ p  e.  a  ( s  u.  p )  =  (
U_ p  e.  a  s  u.  U_ p  e.  a  p )
50 vex 3116 . . . . . . . . . . . . . . . . . 18  |-  s  e. 
_V
51 vex 3116 . . . . . . . . . . . . . . . . . 18  |-  p  e. 
_V
5250, 51unex 6582 . . . . . . . . . . . . . . . . 17  |-  ( s  u.  p )  e. 
_V
5352dfiun3 5257 . . . . . . . . . . . . . . . 16  |-  U_ p  e.  a  ( s  u.  p )  =  U. ran  ( p  e.  a 
|->  ( s  u.  p
) )
5449, 53eqtr3i 2498 . . . . . . . . . . . . . . 15  |-  ( U_ p  e.  a  s  u.  U_ p  e.  a  p )  =  U. ran  ( p  e.  a 
|->  ( s  u.  p
) )
5548, 54syl6eq 2524 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  X  =  U. ran  (
p  e.  a  |->  ( s  u.  p ) ) )
56 simpll1 1035 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  p  e.  a )  ->  J  e.  Top )
5735adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  p  e.  a )  ->  s  e.  J )
5833sselda 3504 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  p  e.  a )  ->  p  e.  J )
59 unopn 19207 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  e.  Top  /\  s  e.  J  /\  p  e.  J )  ->  ( s  u.  p
)  e.  J )
6056, 57, 58, 59syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  p  e.  a )  ->  (
s  u.  p )  e.  J )
61 eqid 2467 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  a  |->  ( s  u.  p ) )  =  ( p  e.  a  |->  ( s  u.  p ) )
6260, 61fmptd 6045 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( p  e.  a 
|->  ( s  u.  p
) ) : a --> J )
63 frn 5737 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  a  |->  ( s  u.  p ) ) : a --> J  ->  ran  ( p  e.  a  |->  ( s  u.  p ) ) 
C_  J )
6462, 63syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  ran  ( p  e.  a 
|->  ( s  u.  p
) )  C_  J
)
65 elpw2g 4610 . . . . . . . . . . . . . . . . . 18  |-  ( J  e.  Top  ->  ( ran  ( p  e.  a 
|->  ( s  u.  p
) )  e.  ~P J 
<->  ran  ( p  e.  a  |->  ( s  u.  p ) )  C_  J ) )
66653ad2ant1 1017 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( ran  (
p  e.  a  |->  ( s  u.  p ) )  e.  ~P J  <->  ran  ( p  e.  a 
|->  ( s  u.  p
) )  C_  J
) )
6766adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( ran  ( p  e.  a  |->  ( s  u.  p ) )  e.  ~P J  <->  ran  ( p  e.  a  |->  ( s  u.  p ) ) 
C_  J ) )
6864, 67mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  ran  ( p  e.  a 
|->  ( s  u.  p
) )  e.  ~P J )
69 unieq 4253 . . . . . . . . . . . . . . . . . 18  |-  ( c  =  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  U. c  =  U. ran  ( p  e.  a 
|->  ( s  u.  p
) ) )
7069eqeq2d 2481 . . . . . . . . . . . . . . . . 17  |-  ( c  =  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  ( X  = 
U. c  <->  X  =  U. ran  ( p  e.  a  |->  ( s  u.  p ) ) ) )
71 sseq2 3526 . . . . . . . . . . . . . . . . . . 19  |-  ( c  =  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  ( d  C_  c 
<->  d  C_  ran  ( p  e.  a  |->  ( s  u.  p ) ) ) )
7271anbi1d 704 . . . . . . . . . . . . . . . . . 18  |-  ( c  =  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  ( ( d 
C_  c  /\  X  =  U. d )  <->  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) ) )
7372rexbidv 2973 . . . . . . . . . . . . . . . . 17  |-  ( c  =  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  ( E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d )  <->  E. d  e.  PtFin  ( d  C_  ran  ( p  e.  a 
|->  ( s  u.  p
) )  /\  X  =  U. d ) ) )
7470, 73imbi12d 320 . . . . . . . . . . . . . . . 16  |-  ( c  =  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  ( ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  <-> 
( X  =  U. ran  ( p  e.  a 
|->  ( s  u.  p
) )  ->  E. d  e.  PtFin  ( d  C_  ran  ( p  e.  a 
|->  ( s  u.  p
) )  /\  X  =  U. d ) ) ) )
7574rspcv 3210 . . . . . . . . . . . . . . 15  |-  ( ran  ( p  e.  a 
|->  ( s  u.  p
) )  e.  ~P J  ->  ( A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  ( X  = 
U. ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  E. d  e.  PtFin  ( d  C_  ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d ) ) ) )
7668, 75syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( A. c  e. 
~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  ( X  = 
U. ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  E. d  e.  PtFin  ( d  C_  ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d ) ) ) )
7755, 76mpid 41 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( A. c  e. 
~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. d  e.  PtFin  ( d  C_  ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d ) ) )
78 simprr 756 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  x  e.  s )
79 ssel2 3499 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( a  C_  J  /\  s  e.  a )  ->  s  e.  J )
80793ad2antl3 1160 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  s  e.  a )  ->  s  e.  J )
8180adantrr 716 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
s  e.  J )
82 elunii 4250 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  s  /\  s  e.  J )  ->  x  e.  U. J
)
8378, 81, 82syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  x  e.  U. J )
8483, 2syl6eleqr 2566 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  x  e.  X )
8584adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  x  e.  X )
86 simprr 756 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  X  =  U. d )
8785, 86eleqtrd 2557 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  x  e.  U. d )
88 eqid 2467 . . . . . . . . . . . . . . . . . . . 20  |-  U. d  =  U. d
8988ptfinfin 29798 . . . . . . . . . . . . . . . . . . 19  |-  ( ( d  e.  PtFin  /\  x  e.  U. d )  ->  { z  e.  d  |  x  e.  z }  e.  Fin )
9089expcom 435 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  U. d  -> 
( d  e.  PtFin  ->  { z  e.  d  |  x  e.  z }  e.  Fin )
)
9187, 90syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  (
d  e.  PtFin  ->  { z  e.  d  |  x  e.  z }  e.  Fin ) )
92 simprl 755 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) ) )
93 elun1 3671 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  s  ->  x  e.  ( s  u.  p
) )
9493ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  x  e.  ( s  u.  p ) )
9594ralrimivw 2879 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  A. p  e.  a  x  e.  ( s  u.  p ) )
9652rgenw 2825 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  A. p  e.  a  ( s  u.  p )  e.  _V
97 eleq2 2540 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  =  ( s  u.  p )  ->  (
x  e.  z  <->  x  e.  ( s  u.  p
) ) )
9861, 97ralrnmpt 6030 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. p  e.  a  (
s  u.  p )  e.  _V  ->  ( A. z  e.  ran  ( p  e.  a  |->  ( s  u.  p
) ) x  e.  z  <->  A. p  e.  a  x  e.  ( s  u.  p ) ) )
9996, 98ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A. z  e.  ran  ( p  e.  a  |->  ( s  u.  p ) ) x  e.  z  <->  A. p  e.  a  x  e.  ( s  u.  p
) )
10095, 99sylibr 212 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  A. z  e.  ran  ( p  e.  a  |->  ( s  u.  p
) ) x  e.  z )
101100adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  A. z  e.  ran  ( p  e.  a  |->  ( s  u.  p ) ) x  e.  z )
102 ssralv 3564 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d 
C_  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  ( A. z  e.  ran  ( p  e.  a  |->  ( s  u.  p ) ) x  e.  z  ->  A. z  e.  d  x  e.  z ) )
10392, 101, 102sylc 60 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  A. z  e.  d  x  e.  z )
104 rabid2 3039 . . . . . . . . . . . . . . . . . . . 20  |-  ( d  =  { z  e.  d  |  x  e.  z }  <->  A. z  e.  d  x  e.  z )
105103, 104sylibr 212 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  d  =  { z  e.  d  |  x  e.  z } )
106105eleq1d 2536 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  (
d  e.  Fin  <->  { z  e.  d  |  x  e.  z }  e.  Fin ) )
107106biimprd 223 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  ( { z  e.  d  |  x  e.  z }  e.  Fin  ->  d  e.  Fin ) )
10861rnmpt 5248 . . . . . . . . . . . . . . . . . . . . 21  |-  ran  (
p  e.  a  |->  ( s  u.  p ) )  =  { q  |  E. p  e.  a  q  =  ( s  u.  p ) }
10992, 108syl6sseq 3550 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  d  C_ 
{ q  |  E. p  e.  a  q  =  ( s  u.  p ) } )
110 ssabral 3571 . . . . . . . . . . . . . . . . . . . 20  |-  ( d 
C_  { q  |  E. p  e.  a  q  =  ( s  u.  p ) }  <->  A. q  e.  d  E. p  e.  a 
q  =  ( s  u.  p ) )
111109, 110sylib 196 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  A. q  e.  d  E. p  e.  a  q  =  ( s  u.  p
) )
112 uneq2 3652 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  ( f `  q )  ->  (
s  u.  p )  =  ( s  u.  ( f `  q
) ) )
113112eqeq2d 2481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  ( f `  q )  ->  (
q  =  ( s  u.  p )  <->  q  =  ( s  u.  (
f `  q )
) ) )
114113ac6sfi 7764 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( d  e.  Fin  /\  A. q  e.  d  E. p  e.  a  q  =  ( s  u.  p ) )  ->  E. f ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  ( f `  q
) ) ) )
115114expcom 435 . . . . . . . . . . . . . . . . . . 19  |-  ( A. q  e.  d  E. p  e.  a  q  =  ( s  u.  p )  ->  (
d  e.  Fin  ->  E. f ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  ( f `  q
) ) ) ) )
116111, 115syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  (
d  e.  Fin  ->  E. f ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  ( f `  q
) ) ) ) )
117 frn 5737 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f : d --> a  ->  ran  f  C_  a )
118117adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  ( f `
 q ) ) )  ->  ran  f  C_  a )
119118ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ran  f  C_  a )
12034ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  s  e.  a )
121120snssd 4172 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  { s } 
C_  a )
122119, 121unssd 3680 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ( ran  f  u.  { s } ) 
C_  a )
123 simprl 755 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  d  e.  Fin )
124 simprrl 763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  f : d --> a )
125 ffn 5731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f : d --> a  -> 
f  Fn  d )
126124, 125syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  f  Fn  d
)
127 dffn4 5801 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  Fn  d  <->  f :
d -onto-> ran  f )
128126, 127sylib 196 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  f : d
-onto->
ran  f )
129 fofi 7806 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( d  e.  Fin  /\  f : d -onto-> ran  f
)  ->  ran  f  e. 
Fin )
130123, 128, 129syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ran  f  e.  Fin )
131 snfi 7596 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  { s }  e.  Fin
132 unfi 7787 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ran  f  e.  Fin  /\ 
{ s }  e.  Fin )  ->  ( ran  f  u.  { s } )  e.  Fin )
133130, 131, 132sylancl 662 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ( ran  f  u.  { s } )  e.  Fin )
134 elfpw 7822 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ran  f  u.  {
s } )  e.  ( ~P a  i^i 
Fin )  <->  ( ( ran  f  u.  { s } )  C_  a  /\  ( ran  f  u. 
{ s } )  e.  Fin ) )
135122, 133, 134sylanbrc 664 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ( ran  f  u.  { s } )  e.  ( ~P a  i^i  Fin ) )
136 simplrr 760 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  X  =  U. d )
137 uniiun 4378 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  U. d  =  U_ q  e.  d  q
138 simprrr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  A. q  e.  d  q  =  ( s  u.  ( f `  q ) ) )
139 iuneq2 4342 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A. q  e.  d  q  =  ( s  u.  ( f `  q
) )  ->  U_ q  e.  d  q  =  U_ q  e.  d  ( s  u.  ( f `
 q ) ) )
140138, 139syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  U_ q  e.  d  q  =  U_ q  e.  d  ( s  u.  ( f `  q
) ) )
141137, 140syl5eq 2520 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  U. d  =  U_ q  e.  d  (
s  u.  ( f `
 q ) ) )
142136, 141eqtrd 2508 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  X  =  U_ q  e.  d  (
s  u.  ( f `
 q ) ) )
143 ssun2 3668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  { s }  C_  ( ran  f  u.  { s } )
144 ssnid 4056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  s  e. 
{ s }
145143, 144sselii 3501 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  s  e.  ( ran  f  u. 
{ s } )
146 elssuni 4275 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( s  e.  ( ran  f  u.  { s } )  ->  s  C_  U. ( ran  f  u.  { s } ) )
147145, 146ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  s  C_  U. ( ran  f  u. 
{ s } )
148 fvssunirn 5889 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f `
 q )  C_  U.
ran  f
149 ssun1 3667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ran  f  C_  ( ran  f  u. 
{ s } )
150149unissi 4268 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  U. ran  f  C_  U. ( ran  f  u.  { s } )
151148, 150sstri 3513 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f `
 q )  C_  U. ( ran  f  u. 
{ s } )
152147, 151unssi 3679 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( s  u.  ( f `  q ) )  C_  U. ( ran  f  u. 
{ s } )
153152rgenw 2825 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  A. q  e.  d  ( s  u.  ( f `  q
) )  C_  U. ( ran  f  u.  { s } )
154 iunss 4366 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( U_ q  e.  d  (
s  u.  ( f `
 q ) ) 
C_  U. ( ran  f  u.  { s } )  <->  A. q  e.  d 
( s  u.  (
f `  q )
)  C_  U. ( ran  f  u.  { s } ) )
155153, 154mpbir 209 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  U_ q  e.  d  ( s  u.  ( f `  q
) )  C_  U. ( ran  f  u.  { s } )
156142, 155syl6eqss 3554 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  X  C_  U. ( ran  f  u.  { s } ) )
15733ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  a  C_  J
)
158119, 157sstrd 3514 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ran  f  C_  J )
15935ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  s  e.  J
)
160159snssd 4172 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  { s } 
C_  J )
161158, 160unssd 3680 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ( ran  f  u.  { s } ) 
C_  J )
162 uniss 4266 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ran  f  u.  {
s } )  C_  J  ->  U. ( ran  f  u.  { s } ) 
C_  U. J )
163162, 2syl6sseqr 3551 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ran  f  u.  {
s } )  C_  J  ->  U. ( ran  f  u.  { s } ) 
C_  X )
164161, 163syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  U. ( ran  f  u.  { s } ) 
C_  X )
165156, 164eqssd 3521 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  X  =  U. ( ran  f  u.  {
s } ) )
166 unieq 4253 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  =  ( ran  f  u.  { s } )  ->  U. b  =  U. ( ran  f  u.  {
s } ) )
167166eqeq2d 2481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  =  ( ran  f  u.  { s } )  ->  ( X  = 
U. b  <->  X  =  U. ( ran  f  u. 
{ s } ) ) )
168167rspcev 3214 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ran  f  u. 
{ s } )  e.  ( ~P a  i^i  Fin )  /\  X  =  U. ( ran  f  u.  { s } ) )  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b )
169135, 165, 168syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b )
170169expr 615 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  d  e.  Fin )  ->  (
( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) )  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b ) )
171170exlimdv 1700 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  d  e.  Fin )  ->  ( E. f ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  ( f `  q
) ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) )
172171ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  (
d  e.  Fin  ->  ( E. f ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  ( f `  q
) ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) ) )
173116, 172mpdd 40 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  (
d  e.  Fin  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) )
17491, 107, 1733syld 55 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  (
d  e.  PtFin  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b ) )
175174ex 434 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( ( d  C_  ran  ( p  e.  a 
|->  ( s  u.  p
) )  /\  X  =  U. d )  -> 
( d  e.  PtFin  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) ) )
176175com23 78 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( d  e.  PtFin  -> 
( ( d  C_  ran  ( p  e.  a 
|->  ( s  u.  p
) )  /\  X  =  U. d )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) ) )
177176rexlimdv 2953 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( E. d  e. 
PtFin  ( d  C_  ran  ( p  e.  a  |->  ( s  u.  p
) )  /\  X  =  U. d )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) )
17877, 177syld 44 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( A. c  e. 
~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b ) )
179178rexlimdvaa 2956 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( E. s  e.  a  x  e.  s  ->  ( A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b ) ) )
18032, 179syld 44 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( x  e.  X  ->  ( A. c  e.  ~P  J
( X  =  U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d
) )  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b ) ) )
181180exlimdv 1700 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( E. x  x  e.  X  ->  ( A. c  e.  ~P  J ( X  = 
U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) ) )
18227, 181syl5bi 217 . . . . . . . 8  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( X  =/=  (/)  ->  ( A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b ) ) )
18326, 182pm2.61dne 2784 . . . . . . 7  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b ) )
18415, 183syl3an3 1263 . . . . . 6  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  e.  ~P J )  ->  ( A. c  e.  ~P  J ( X  = 
U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) )
1851843exp 1195 . . . . 5  |-  ( J  e.  Top  ->  ( X  =  U. a  ->  ( a  e.  ~P J  ->  ( A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b ) ) ) )
186185com24 87 . . . 4  |-  ( J  e.  Top  ->  ( A. c  e.  ~P  J ( X  = 
U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d ) )  -> 
( a  e.  ~P J  ->  ( X  = 
U. a  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b ) ) ) )
187186ralrimdv 2880 . . 3  |-  ( J  e.  Top  ->  ( A. c  e.  ~P  J ( X  = 
U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d ) )  ->  A. a  e.  ~P  J ( X  = 
U. a  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b ) ) )
1882iscmp 19682 . . . 4  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. a  e.  ~P  J ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) ) )
189188baibr 902 . . 3  |-  ( J  e.  Top  ->  ( A. a  e.  ~P  J ( X  = 
U. a  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b )  <->  J  e.  Comp ) )
190187, 189sylibd 214 . 2  |-  ( J  e.  Top  ->  ( A. c  e.  ~P  J ( X  = 
U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d ) )  ->  J  e.  Comp ) )
19114, 190impbid2 204 1  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {csn 4027   U.cuni 4245   U_ciun 4325    |-> cmpt 4505   ran crn 5000    Fn wfn 5583   -->wf 5584   -onto->wfo 5586   ` cfv 5588   Fincfn 7516   Topctop 19189   Compccmp 19680   PtFincptfin 29761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-fin 7520  df-top 19194  df-cmp 19681  df-ptfin 29765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator