Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  compne Structured version   Unicode version

Theorem compne 31590
Description: The complement of  A is not equal to  A. (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
compne  |-  ( _V 
\  A )  =/= 
A

Proof of Theorem compne
StepHypRef Expression
1 vn0 3791 . 2  |-  _V  =/=  (/)
2 ssun1 3653 . . . . . . . 8  |-  _V  C_  ( _V  u.  A
)
3 ssv 3509 . . . . . . . 8  |-  ( _V  u.  A )  C_  _V
42, 3eqssi 3505 . . . . . . 7  |-  _V  =  ( _V  u.  A
)
5 undif1 3891 . . . . . . 7  |-  ( ( _V  \  A )  u.  A )  =  ( _V  u.  A
)
64, 5eqtr4i 2486 . . . . . 6  |-  _V  =  ( ( _V  \  A )  u.  A
)
7 uneq1 3637 . . . . . 6  |-  ( ( _V  \  A )  =  A  ->  (
( _V  \  A
)  u.  A )  =  ( A  u.  A ) )
86, 7syl5eq 2507 . . . . 5  |-  ( ( _V  \  A )  =  A  ->  _V  =  ( A  u.  A ) )
9 unidm 3633 . . . . 5  |-  ( A  u.  A )  =  A
108, 9syl6eq 2511 . . . 4  |-  ( ( _V  \  A )  =  A  ->  _V  =  A )
11 difabs 3759 . . . . . . 7  |-  ( ( _V  \  A ) 
\  A )  =  ( _V  \  A
)
12 id 22 . . . . . . 7  |-  ( ( _V  \  A )  =  A  ->  ( _V  \  A )  =  A )
1311, 12syl5req 2508 . . . . . 6  |-  ( ( _V  \  A )  =  A  ->  A  =  ( ( _V 
\  A )  \  A ) )
14 difeq1 3601 . . . . . 6  |-  ( ( _V  \  A )  =  A  ->  (
( _V  \  A
)  \  A )  =  ( A  \  A ) )
1513, 14eqtrd 2495 . . . . 5  |-  ( ( _V  \  A )  =  A  ->  A  =  ( A  \  A ) )
16 difid 3884 . . . . 5  |-  ( A 
\  A )  =  (/)
1715, 16syl6eq 2511 . . . 4  |-  ( ( _V  \  A )  =  A  ->  A  =  (/) )
1810, 17eqtrd 2495 . . 3  |-  ( ( _V  \  A )  =  A  ->  _V  =  (/) )
1918necon3i 2694 . 2  |-  ( _V  =/=  (/)  ->  ( _V  \  A )  =/=  A
)
201, 19ax-mp 5 1  |-  ( _V 
\  A )  =/= 
A
Colors of variables: wff setvar class
Syntax hints:    = wceq 1398    =/= wne 2649   _Vcvv 3106    \ cdif 3458    u. cun 3459   (/)c0 3783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator