MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeqd Structured version   Unicode version

Theorem comfeqd 15195
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeqd.1  |-  ( ph  ->  (comp `  C )  =  (comp `  D )
)
comfeqd.2  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
Assertion
Ref Expression
comfeqd  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )

Proof of Theorem comfeqd
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comfeqd.1 . . . . . . . . 9  |-  ( ph  ->  (comp `  C )  =  (comp `  D )
)
21oveqd 6287 . . . . . . . 8  |-  ( ph  ->  ( <. x ,  y
>. (comp `  C )
z )  =  (
<. x ,  y >.
(comp `  D )
z ) )
32oveqd 6287 . . . . . . 7  |-  ( ph  ->  ( g ( <.
x ,  y >.
(comp `  C )
z ) f )  =  ( g (
<. x ,  y >.
(comp `  D )
z ) f ) )
43ralrimivw 2869 . . . . . 6  |-  ( ph  ->  A. g  e.  ( y ( Hom  `  C
) z ) ( g ( <. x ,  y >. (comp `  C ) z ) f )  =  ( g ( <. x ,  y >. (comp `  D ) z ) f ) )
54ralrimivw 2869 . . . . 5  |-  ( ph  ->  A. f  e.  ( x ( Hom  `  C
) y ) A. g  e.  ( y
( Hom  `  C ) z ) ( g ( <. x ,  y
>. (comp `  C )
z ) f )  =  ( g (
<. x ,  y >.
(comp `  D )
z ) f ) )
65ralrimivw 2869 . . . 4  |-  ( ph  ->  A. z  e.  (
Base `  C ) A. f  e.  (
x ( Hom  `  C
) y ) A. g  e.  ( y
( Hom  `  C ) z ) ( g ( <. x ,  y
>. (comp `  C )
z ) f )  =  ( g (
<. x ,  y >.
(comp `  D )
z ) f ) )
76ralrimivw 2869 . . 3  |-  ( ph  ->  A. y  e.  (
Base `  C ) A. z  e.  ( Base `  C ) A. f  e.  ( x
( Hom  `  C ) y ) A. g  e.  ( y ( Hom  `  C ) z ) ( g ( <.
x ,  y >.
(comp `  C )
z ) f )  =  ( g (
<. x ,  y >.
(comp `  D )
z ) f ) )
87ralrimivw 2869 . 2  |-  ( ph  ->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) A. z  e.  ( Base `  C ) A. f  e.  ( x ( Hom  `  C ) y ) A. g  e.  ( y ( Hom  `  C
) z ) ( g ( <. x ,  y >. (comp `  C ) z ) f )  =  ( g ( <. x ,  y >. (comp `  D ) z ) f ) )
9 eqid 2454 . . 3  |-  (comp `  C )  =  (comp `  C )
10 eqid 2454 . . 3  |-  (comp `  D )  =  (comp `  D )
11 eqid 2454 . . 3  |-  ( Hom  `  C )  =  ( Hom  `  C )
12 eqidd 2455 . . 3  |-  ( ph  ->  ( Base `  C
)  =  ( Base `  C ) )
13 comfeqd.2 . . . 4  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
1413homfeqbas 15184 . . 3  |-  ( ph  ->  ( Base `  C
)  =  ( Base `  D ) )
159, 10, 11, 12, 14, 13comfeq 15194 . 2  |-  ( ph  ->  ( (compf `  C )  =  (compf `  D )  <->  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) A. z  e.  ( Base `  C
) A. f  e.  ( x ( Hom  `  C ) y ) A. g  e.  ( y ( Hom  `  C
) z ) ( g ( <. x ,  y >. (comp `  C ) z ) f )  =  ( g ( <. x ,  y >. (comp `  D ) z ) f ) ) )
168, 15mpbird 232 1  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1398   A.wral 2804   <.cop 4022   ` cfv 5570  (class class class)co 6270   Basecbs 14716   Hom chom 14795  compcco 14796   Hom f chomf 15155  compfccomf 15156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-homf 15159  df-comf 15160
This theorem is referenced by:  fullresc  15339
  Copyright terms: Public domain W3C validator