MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeq Unicode version

Theorem comfeq 13887
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeq.1  |-  .x.  =  (comp `  C )
comfeq.2  |-  .xb  =  (comp `  D )
comfeq.h  |-  H  =  (  Hom  `  C
)
comfeq.3  |-  ( ph  ->  B  =  ( Base `  C ) )
comfeq.4  |-  ( ph  ->  B  =  ( Base `  D ) )
comfeq.5  |-  ( ph  ->  (  Homf 
`  C )  =  (  Homf 
`  D ) )
Assertion
Ref Expression
comfeq  |-  ( ph  ->  ( (compf `  C )  =  (compf `  D )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
Distinct variable groups:    f, g, x, y, z, B    C, f, g, z    ph, f,
g, z    .x. , f, g, x, y    D, f, g, z    f, H, g, x, y    .xb , f,
g, x, y
Allowed substitution hints:    ph( x, y)    C( x, y)    D( x, y)    .xb ( z)    .x. ( z)    H( z)

Proof of Theorem comfeq
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ovex 6065 . . . . . 6  |-  ( ( 2nd `  u ) H z )  e. 
_V
2 fvex 5701 . . . . . 6  |-  ( H `
 u )  e. 
_V
31, 2mpt2ex 6384 . . . . 5  |-  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `  u
)  |->  ( g ( u  .x.  z ) f ) )  e. 
_V
43rgen2w 2734 . . . 4  |-  A. u  e.  ( B  X.  B
) A. z  e.  B  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  e.  _V
5 mpt22eqb 6138 . . . 4  |-  ( A. u  e.  ( B  X.  B ) A. z  e.  B  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  e.  _V  ->  ( ( u  e.  ( B  X.  B
) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) ) )  =  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.xb  z ) f ) ) )  <->  A. u  e.  ( B  X.  B
) A. z  e.  B  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) ) ) )
64, 5ax-mp 8 . . 3  |-  ( ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .x.  z ) f ) ) )  =  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) ) )  <->  A. u  e.  ( B  X.  B
) A. z  e.  B  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) ) )
7 vex 2919 . . . . . . . . 9  |-  x  e. 
_V
8 vex 2919 . . . . . . . . 9  |-  y  e. 
_V
97, 8op2ndd 6317 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( 2nd `  u
)  =  y )
109oveq1d 6055 . . . . . . 7  |-  ( u  =  <. x ,  y
>.  ->  ( ( 2nd `  u ) H z )  =  ( y H z ) )
11 fveq2 5687 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( H `  u )  =  ( H `  <. x ,  y >. )
)
12 df-ov 6043 . . . . . . . . 9  |-  ( x H y )  =  ( H `  <. x ,  y >. )
1311, 12syl6eqr 2454 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( H `  u )  =  ( x H y ) )
14 oveq1 6047 . . . . . . . . . 10  |-  ( u  =  <. x ,  y
>.  ->  ( u  .x.  z )  =  (
<. x ,  y >.  .x.  z ) )
1514oveqd 6057 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( g ( u  .x.  z ) f )  =  ( g ( <. x ,  y >.  .x.  z
) f ) )
16 oveq1 6047 . . . . . . . . . 10  |-  ( u  =  <. x ,  y
>.  ->  ( u  .xb  z )  =  (
<. x ,  y >.  .xb  z ) )
1716oveqd 6057 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( g ( u  .xb  z )
f )  =  ( g ( <. x ,  y >.  .xb  z
) f ) )
1815, 17eqeq12d 2418 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( ( g ( u  .x.  z
) f )  =  ( g ( u 
.xb  z ) f )  <->  ( g (
<. x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
1913, 18raleqbidv 2876 . . . . . . 7  |-  ( u  =  <. x ,  y
>.  ->  ( A. f  e.  ( H `  u
) ( g ( u  .x.  z ) f )  =  ( g ( u  .xb  z ) f )  <->  A. f  e.  (
x H y ) ( g ( <.
x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
2010, 19raleqbidv 2876 . . . . . 6  |-  ( u  =  <. x ,  y
>.  ->  ( A. g  e.  ( ( 2nd `  u
) H z ) A. f  e.  ( H `  u ) ( g ( u 
.x.  z ) f )  =  ( g ( u  .xb  z
) f )  <->  A. g  e.  ( y H z ) A. f  e.  ( x H y ) ( g (
<. x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
21 ovex 6065 . . . . . . . 8  |-  ( g ( u  .x.  z
) f )  e. 
_V
2221rgen2w 2734 . . . . . . 7  |-  A. g  e.  ( ( 2nd `  u
) H z ) A. f  e.  ( H `  u ) ( g ( u 
.x.  z ) f )  e.  _V
23 mpt22eqb 6138 . . . . . . 7  |-  ( A. g  e.  ( ( 2nd `  u ) H z ) A. f  e.  ( H `  u
) ( g ( u  .x.  z ) f )  e.  _V  ->  ( ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) )  <->  A. g  e.  ( ( 2nd `  u
) H z ) A. f  e.  ( H `  u ) ( g ( u 
.x.  z ) f )  =  ( g ( u  .xb  z
) f ) ) )
2422, 23ax-mp 8 . . . . . 6  |-  ( ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `  u
)  |->  ( g ( u  .xb  z )
f ) )  <->  A. g  e.  ( ( 2nd `  u
) H z ) A. f  e.  ( H `  u ) ( g ( u 
.x.  z ) f )  =  ( g ( u  .xb  z
) f ) )
25 ralcom 2828 . . . . . 6  |-  ( A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g ( <. x ,  y >.  .x.  z
) f )  =  ( g ( <.
x ,  y >.  .xb  z ) f )  <->  A. g  e.  (
y H z ) A. f  e.  ( x H y ) ( g ( <.
x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) )
2620, 24, 253bitr4g 280 . . . . 5  |-  ( u  =  <. x ,  y
>.  ->  ( ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `  u
)  |->  ( g ( u  .x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.xb  z ) f ) )  <->  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
2726ralbidv 2686 . . . 4  |-  ( u  =  <. x ,  y
>.  ->  ( A. z  e.  B  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) )  <->  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
2827ralxp 4975 . . 3  |-  ( A. u  e.  ( B  X.  B ) A. z  e.  B  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) )
296, 28bitri 241 . 2  |-  ( ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .x.  z ) f ) ) )  =  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) )
30 comfeq.3 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  C ) )
3130, 30xpeq12d 4862 . . . . 5  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  C )  X.  ( Base `  C
) ) )
32 eqidd 2405 . . . . 5  |-  ( ph  ->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .x.  z ) f ) ) )
3331, 30, 32mpt2eq123dv 6095 . . . 4  |-  ( ph  ->  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) ) )  =  ( u  e.  ( ( Base `  C
)  X.  ( Base `  C ) ) ,  z  e.  ( Base `  C )  |->  ( g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `  u
)  |->  ( g ( u  .x.  z ) f ) ) ) )
34 eqid 2404 . . . . 5  |-  (compf `  C
)  =  (compf `  C
)
35 eqid 2404 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
36 comfeq.h . . . . 5  |-  H  =  (  Hom  `  C
)
37 comfeq.1 . . . . 5  |-  .x.  =  (comp `  C )
3834, 35, 36, 37comfffval 13879 . . . 4  |-  (compf `  C
)  =  ( u  e.  ( ( Base `  C )  X.  ( Base `  C ) ) ,  z  e.  (
Base `  C )  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) ) )
3933, 38syl6eqr 2454 . . 3  |-  ( ph  ->  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) ) )  =  (compf `  C ) )
40 eqid 2404 . . . . . . . 8  |-  (  Hom  `  D )  =  (  Hom  `  D )
41 comfeq.5 . . . . . . . . 9  |-  ( ph  ->  (  Homf 
`  C )  =  (  Homf 
`  D ) )
42413ad2ant1 978 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  (  Homf  `  C )  =  (  Homf 
`  D ) )
43 xp2nd 6336 . . . . . . . . . 10  |-  ( u  e.  ( B  X.  B )  ->  ( 2nd `  u )  e.  B )
44433ad2ant2 979 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( 2nd `  u )  e.  B )
45303ad2ant1 978 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  B  =  ( Base `  C
) )
4644, 45eleqtrd 2480 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( 2nd `  u )  e.  ( Base `  C
) )
47 simp3 959 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  z  e.  B )
4847, 45eleqtrd 2480 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  z  e.  ( Base `  C
) )
4935, 36, 40, 42, 46, 48homfeqval 13878 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  (
( 2nd `  u
) H z )  =  ( ( 2nd `  u ) (  Hom  `  D ) z ) )
50 xp1st 6335 . . . . . . . . . . . 12  |-  ( u  e.  ( B  X.  B )  ->  ( 1st `  u )  e.  B )
51503ad2ant2 979 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( 1st `  u )  e.  B )
5251, 45eleqtrd 2480 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( 1st `  u )  e.  ( Base `  C
) )
5335, 36, 40, 42, 52, 46homfeqval 13878 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  (
( 1st `  u
) H ( 2nd `  u ) )  =  ( ( 1st `  u
) (  Hom  `  D
) ( 2nd `  u
) ) )
54 df-ov 6043 . . . . . . . . 9  |-  ( ( 1st `  u ) H ( 2nd `  u
) )  =  ( H `  <. ( 1st `  u ) ,  ( 2nd `  u
) >. )
55 df-ov 6043 . . . . . . . . 9  |-  ( ( 1st `  u ) (  Hom  `  D
) ( 2nd `  u
) )  =  ( (  Hom  `  D
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. )
5653, 54, 553eqtr3g 2459 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( H `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. )  =  (
(  Hom  `  D ) `
 <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
)
57 1st2nd2 6345 . . . . . . . . . 10  |-  ( u  e.  ( B  X.  B )  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
58573ad2ant2 979 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
5958fveq2d 5691 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( H `  u )  =  ( H `  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
)
6058fveq2d 5691 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  (
(  Hom  `  D ) `
 u )  =  ( (  Hom  `  D
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. ) )
6156, 59, 603eqtr4d 2446 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  ( H `  u )  =  ( (  Hom  `  D ) `  u
) )
62 eqidd 2405 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  (
g ( u  .xb  z ) f )  =  ( g ( u  .xb  z )
f ) )
6349, 61, 62mpt2eq123dv 6095 . . . . . 6  |-  ( (
ph  /\  u  e.  ( B  X.  B
)  /\  z  e.  B )  ->  (
g  e.  ( ( 2nd `  u ) H z ) ,  f  e.  ( H `
 u )  |->  ( g ( u  .xb  z ) f ) )  =  ( g  e.  ( ( 2nd `  u ) (  Hom  `  D ) z ) ,  f  e.  ( (  Hom  `  D
) `  u )  |->  ( g ( u 
.xb  z ) f ) ) )
6463mpt2eq3dva 6097 . . . . 5  |-  ( ph  ->  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.xb  z ) f ) ) )  =  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) (  Hom  `  D
) z ) ,  f  e.  ( (  Hom  `  D ) `  u )  |->  ( g ( u  .xb  z
) f ) ) ) )
65 comfeq.4 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  D ) )
6665, 65xpeq12d 4862 . . . . . 6  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  D )  X.  ( Base `  D
) ) )
67 eqidd 2405 . . . . . 6  |-  ( ph  ->  ( g  e.  ( ( 2nd `  u
) (  Hom  `  D
) z ) ,  f  e.  ( (  Hom  `  D ) `  u )  |->  ( g ( u  .xb  z
) f ) )  =  ( g  e.  ( ( 2nd `  u
) (  Hom  `  D
) z ) ,  f  e.  ( (  Hom  `  D ) `  u )  |->  ( g ( u  .xb  z
) f ) ) )
6866, 65, 67mpt2eq123dv 6095 . . . . 5  |-  ( ph  ->  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) (  Hom  `  D
) z ) ,  f  e.  ( (  Hom  `  D ) `  u )  |->  ( g ( u  .xb  z
) f ) ) )  =  ( u  e.  ( ( Base `  D )  X.  ( Base `  D ) ) ,  z  e.  (
Base `  D )  |->  ( g  e.  ( ( 2nd `  u
) (  Hom  `  D
) z ) ,  f  e.  ( (  Hom  `  D ) `  u )  |->  ( g ( u  .xb  z
) f ) ) ) )
6964, 68eqtrd 2436 . . . 4  |-  ( ph  ->  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.xb  z ) f ) ) )  =  ( u  e.  ( ( Base `  D
)  X.  ( Base `  D ) ) ,  z  e.  ( Base `  D )  |->  ( g  e.  ( ( 2nd `  u ) (  Hom  `  D ) z ) ,  f  e.  ( (  Hom  `  D
) `  u )  |->  ( g ( u 
.xb  z ) f ) ) ) )
70 eqid 2404 . . . . 5  |-  (compf `  D
)  =  (compf `  D
)
71 eqid 2404 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
72 comfeq.2 . . . . 5  |-  .xb  =  (comp `  D )
7370, 71, 40, 72comfffval 13879 . . . 4  |-  (compf `  D
)  =  ( u  e.  ( ( Base `  D )  X.  ( Base `  D ) ) ,  z  e.  (
Base `  D )  |->  ( g  e.  ( ( 2nd `  u
) (  Hom  `  D
) z ) ,  f  e.  ( (  Hom  `  D ) `  u )  |->  ( g ( u  .xb  z
) f ) ) )
7469, 73syl6eqr 2454 . . 3  |-  ( ph  ->  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.xb  z ) f ) ) )  =  (compf `  D ) )
7539, 74eqeq12d 2418 . 2  |-  ( ph  ->  ( ( u  e.  ( B  X.  B
) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.x.  z ) f ) ) )  =  ( u  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  u
) H z ) ,  f  e.  ( H `  u ) 
|->  ( g ( u 
.xb  z ) f ) ) )  <->  (compf `  C )  =  (compf `  D ) ) )
7629, 75syl5rbbr 252 1  |-  ( ph  ->  ( (compf `  C )  =  (compf `  D )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  =  ( g (
<. x ,  y >.  .xb  z ) f ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916   <.cop 3777    X. cxp 4835   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   1stc1st 6306   2ndc2nd 6307   Basecbs 13424    Hom chom 13495  compcco 13496    Homf chomf 13846  compfccomf 13847
This theorem is referenced by:  comfeqd  13888  2oppccomf  13906  oppccomfpropd  13908  resssetc  14202  resscatc  14215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-homf 13850  df-comf 13851
  Copyright terms: Public domain W3C validator