Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinearex Structured version   Unicode version

Theorem colinearex 30612
Description: The colinear predicate exists. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinearex  |-  Colinear  e.  _V

Proof of Theorem colinearex
Dummy variables  a 
b  c  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-colinear 30591 . 2  |-  Colinear  =  `' { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }
2 nnex 10615 . . . . 5  |-  NN  e.  _V
3 fvex 5891 . . . . . . 7  |-  ( EE
`  n )  e. 
_V
43, 3xpex 6609 . . . . . 6  |-  ( ( EE `  n )  X.  ( EE `  n ) )  e. 
_V
54, 3xpex 6609 . . . . 5  |-  ( ( ( EE `  n
)  X.  ( EE
`  n ) )  X.  ( EE `  n ) )  e. 
_V
62, 5iunex 6787 . . . 4  |-  U_ n  e.  NN  ( ( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n
) )  e.  _V
7 df-oprab 6309 . . . . 5  |-  { <. <.
b ,  c >. ,  a >.  |  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }  =  { x  |  E. b E. c E. a
( x  =  <. <.
b ,  c >. ,  a >.  /\  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) ) }
8 opelxpi 4886 . . . . . . . . . . . . . 14  |-  ( ( b  e.  ( EE
`  n )  /\  c  e.  ( EE `  n ) )  ->  <. b ,  c >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) )
983adant1 1023 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n
) )  ->  <. b ,  c >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )
10 simp1 1005 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n
) )  ->  a  e.  ( EE `  n
) )
11 opelxpi 4886 . . . . . . . . . . . . 13  |-  ( (
<. b ,  c >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  a  e.  ( EE `  n ) )  ->  <. <. b ,  c >. ,  a
>.  e.  ( ( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n
) ) )
129, 10, 11syl2anc 665 . . . . . . . . . . . 12  |-  ( ( a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n
) )  ->  <. <. b ,  c >. ,  a
>.  e.  ( ( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n
) ) )
1312adantr 466 . . . . . . . . . . 11  |-  ( ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) )  ->  <. <. b ,  c >. ,  a
>.  e.  ( ( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n
) ) )
1413reximi 2900 . . . . . . . . . 10  |-  ( E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) )  ->  E. n  e.  NN  <. <. b ,  c
>. ,  a >.  e.  ( ( ( EE
`  n )  X.  ( EE `  n
) )  X.  ( EE `  n ) ) )
15 eliun 4307 . . . . . . . . . 10  |-  ( <. <. b ,  c >. ,  a >.  e.  U_ n  e.  NN  (
( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n ) )  <->  E. n  e.  NN  <. <. b ,  c
>. ,  a >.  e.  ( ( ( EE
`  n )  X.  ( EE `  n
) )  X.  ( EE `  n ) ) )
1614, 15sylibr 215 . . . . . . . . 9  |-  ( E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) )  ->  <. <. b ,  c >. ,  a
>.  e.  U_ n  e.  NN  ( ( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n
) ) )
17 eleq1 2501 . . . . . . . . . 10  |-  ( x  =  <. <. b ,  c
>. ,  a >.  -> 
( x  e.  U_ n  e.  NN  (
( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n ) )  <->  <. <. b ,  c >. ,  a
>.  e.  U_ n  e.  NN  ( ( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n
) ) ) )
1817biimpar 487 . . . . . . . . 9  |-  ( ( x  =  <. <. b ,  c >. ,  a
>.  /\  <. <. b ,  c
>. ,  a >.  e. 
U_ n  e.  NN  ( ( ( EE
`  n )  X.  ( EE `  n
) )  X.  ( EE `  n ) ) )  ->  x  e.  U_ n  e.  NN  (
( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n ) ) )
1916, 18sylan2 476 . . . . . . . 8  |-  ( ( x  =  <. <. b ,  c >. ,  a
>.  /\  E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) )  ->  x  e.  U_ n  e.  NN  ( ( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n
) ) )
2019exlimiv 1769 . . . . . . 7  |-  ( E. a ( x  = 
<. <. b ,  c
>. ,  a >.  /\ 
E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) )  ->  x  e.  U_ n  e.  NN  ( ( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n
) ) )
2120exlimivv 1770 . . . . . 6  |-  ( E. b E. c E. a ( x  = 
<. <. b ,  c
>. ,  a >.  /\ 
E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) )  ->  x  e.  U_ n  e.  NN  ( ( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n
) ) )
2221abssi 3542 . . . . 5  |-  { x  |  E. b E. c E. a ( x  = 
<. <. b ,  c
>. ,  a >.  /\ 
E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) ) } 
C_  U_ n  e.  NN  ( ( ( EE
`  n )  X.  ( EE `  n
) )  X.  ( EE `  n ) )
237, 22eqsstri 3500 . . . 4  |-  { <. <.
b ,  c >. ,  a >.  |  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }  C_  U_ n  e.  NN  (
( ( EE `  n )  X.  ( EE `  n ) )  X.  ( EE `  n ) )
246, 23ssexi 4570 . . 3  |-  { <. <.
b ,  c >. ,  a >.  |  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }  e.  _V
2524cnvex 6754 . 2  |-  `' { <. <. b ,  c
>. ,  a >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }  e.  _V
261, 25eqeltri 2513 1  |-  Colinear  e.  _V
Colors of variables: wff setvar class
Syntax hints:    /\ wa 370    \/ w3o 981    /\ w3a 982    = wceq 1437   E.wex 1659    e. wcel 1870   {cab 2414   E.wrex 2783   _Vcvv 3087   <.cop 4008   U_ciun 4302   class class class wbr 4426    X. cxp 4852   `'ccnv 4853   ` cfv 5601   {coprab 6306   NNcn 10609   EEcee 24764    Btwn cbtwn 24765    Colinear ccolin 30589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-i2m1 9606  ax-1ne0 9607  ax-rrecex 9610  ax-cnre 9611
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-nn 10610  df-colinear 30591
This theorem is referenced by:  fvline  30696
  Copyright terms: Public domain W3C validator