MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuval2 Structured version   Unicode version

Theorem cofuval2 14796
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval2.b  |-  B  =  ( Base `  C
)
cofuval2.f  |-  ( ph  ->  F ( C  Func  D ) G )
cofuval2.x  |-  ( ph  ->  H ( D  Func  E ) K )
Assertion
Ref Expression
cofuval2  |-  ( ph  ->  ( <. H ,  K >.  o.func 
<. F ,  G >. )  =  <. ( H  o.  F ) ,  ( x  e.  B , 
y  e.  B  |->  ( ( ( F `  x ) K ( F `  y ) )  o.  ( x G y ) ) ) >. )
Distinct variable groups:    x, y, B    x, F, y    x, G, y    x, H, y    ph, x, y    x, K, y
Allowed substitution hints:    C( x, y)    D( x, y)    E( x, y)

Proof of Theorem cofuval2
StepHypRef Expression
1 cofuval2.b . . 3  |-  B  =  ( Base `  C
)
2 cofuval2.f . . . 4  |-  ( ph  ->  F ( C  Func  D ) G )
3 df-br 4292 . . . 4  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
42, 3sylib 196 . . 3  |-  ( ph  -> 
<. F ,  G >.  e.  ( C  Func  D
) )
5 cofuval2.x . . . 4  |-  ( ph  ->  H ( D  Func  E ) K )
6 df-br 4292 . . . 4  |-  ( H ( D  Func  E
) K  <->  <. H ,  K >.  e.  ( D 
Func  E ) )
75, 6sylib 196 . . 3  |-  ( ph  -> 
<. H ,  K >.  e.  ( D  Func  E
) )
81, 4, 7cofuval 14791 . 2  |-  ( ph  ->  ( <. H ,  K >.  o.func 
<. F ,  G >. )  =  <. ( ( 1st `  <. H ,  K >. )  o.  ( 1st `  <. F ,  G >. ) ) ,  ( x  e.  B , 
y  e.  B  |->  ( ( ( ( 1st `  <. F ,  G >. ) `  x ) ( 2nd `  <. H ,  K >. )
( ( 1st `  <. F ,  G >. ) `  y ) )  o.  ( x ( 2nd `  <. F ,  G >. ) y ) ) ) >. )
9 relfunc 14771 . . . . . 6  |-  Rel  ( D  Func  E )
10 brrelex12 4875 . . . . . 6  |-  ( ( Rel  ( D  Func  E )  /\  H ( D  Func  E ) K )  ->  ( H  e.  _V  /\  K  e.  _V ) )
119, 5, 10sylancr 663 . . . . 5  |-  ( ph  ->  ( H  e.  _V  /\  K  e.  _V )
)
12 op1stg 6588 . . . . 5  |-  ( ( H  e.  _V  /\  K  e.  _V )  ->  ( 1st `  <. H ,  K >. )  =  H )
1311, 12syl 16 . . . 4  |-  ( ph  ->  ( 1st `  <. H ,  K >. )  =  H )
14 relfunc 14771 . . . . . 6  |-  Rel  ( C  Func  D )
15 brrelex12 4875 . . . . . 6  |-  ( ( Rel  ( C  Func  D )  /\  F ( C  Func  D ) G )  ->  ( F  e.  _V  /\  G  e.  _V ) )
1614, 2, 15sylancr 663 . . . . 5  |-  ( ph  ->  ( F  e.  _V  /\  G  e.  _V )
)
17 op1stg 6588 . . . . 5  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( 1st `  <. F ,  G >. )  =  F )
1816, 17syl 16 . . . 4  |-  ( ph  ->  ( 1st `  <. F ,  G >. )  =  F )
1913, 18coeq12d 5003 . . 3  |-  ( ph  ->  ( ( 1st `  <. H ,  K >. )  o.  ( 1st `  <. F ,  G >. )
)  =  ( H  o.  F ) )
20 op2ndg 6589 . . . . . . . 8  |-  ( ( H  e.  _V  /\  K  e.  _V )  ->  ( 2nd `  <. H ,  K >. )  =  K )
2111, 20syl 16 . . . . . . 7  |-  ( ph  ->  ( 2nd `  <. H ,  K >. )  =  K )
22213ad2ant1 1009 . . . . . 6  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( 2nd ` 
<. H ,  K >. )  =  K )
23183ad2ant1 1009 . . . . . . 7  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( 1st ` 
<. F ,  G >. )  =  F )
2423fveq1d 5692 . . . . . 6  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( ( 1st `  <. F ,  G >. ) `  x )  =  ( F `  x ) )
2523fveq1d 5692 . . . . . 6  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( ( 1st `  <. F ,  G >. ) `  y )  =  ( F `  y ) )
2622, 24, 25oveq123d 6111 . . . . 5  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( (
( 1st `  <. F ,  G >. ) `  x ) ( 2nd `  <. H ,  K >. ) ( ( 1st `  <. F ,  G >. ) `  y ) )  =  ( ( F `  x ) K ( F `  y ) ) )
27 op2ndg 6589 . . . . . . . 8  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( 2nd `  <. F ,  G >. )  =  G )
2816, 27syl 16 . . . . . . 7  |-  ( ph  ->  ( 2nd `  <. F ,  G >. )  =  G )
29283ad2ant1 1009 . . . . . 6  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( 2nd ` 
<. F ,  G >. )  =  G )
3029oveqd 6107 . . . . 5  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x
( 2nd `  <. F ,  G >. )
y )  =  ( x G y ) )
3126, 30coeq12d 5003 . . . 4  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( (
( ( 1st `  <. F ,  G >. ) `  x ) ( 2nd `  <. H ,  K >. ) ( ( 1st `  <. F ,  G >. ) `  y ) )  o.  ( x ( 2nd `  <. F ,  G >. )
y ) )  =  ( ( ( F `
 x ) K ( F `  y
) )  o.  (
x G y ) ) )
3231mpt2eq3dva 6149 . . 3  |-  ( ph  ->  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  <. F ,  G >. ) `  x
) ( 2nd `  <. H ,  K >. )
( ( 1st `  <. F ,  G >. ) `  y ) )  o.  ( x ( 2nd `  <. F ,  G >. ) y ) ) )  =  ( x  e.  B ,  y  e.  B  |->  ( ( ( F `  x
) K ( F `
 y ) )  o.  ( x G y ) ) ) )
3319, 32opeq12d 4066 . 2  |-  ( ph  -> 
<. ( ( 1st `  <. H ,  K >. )  o.  ( 1st `  <. F ,  G >. )
) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  <. F ,  G >. ) `  x ) ( 2nd `  <. H ,  K >. ) ( ( 1st `  <. F ,  G >. ) `  y ) )  o.  ( x ( 2nd `  <. F ,  G >. )
y ) ) )
>.  =  <. ( H  o.  F ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( F `
 x ) K ( F `  y
) )  o.  (
x G y ) ) ) >. )
348, 33eqtrd 2474 1  |-  ( ph  ->  ( <. H ,  K >.  o.func 
<. F ,  G >. )  =  <. ( H  o.  F ) ,  ( x  e.  B , 
y  e.  B  |->  ( ( ( F `  x ) K ( F `  y ) )  o.  ( x G y ) ) ) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2971   <.cop 3882   class class class wbr 4291    o. ccom 4843   Rel wrel 4844   ` cfv 5417  (class class class)co 6090    e. cmpt2 6092   1stc1st 6574   2ndc2nd 6575   Basecbs 14173    Func cfunc 14763    o.func ccofu 14765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-map 7215  df-ixp 7263  df-func 14767  df-cofu 14769
This theorem is referenced by:  catcisolem  14973
  Copyright terms: Public domain W3C validator