MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofunexg Structured version   Unicode version

Theorem cofunexg 6749
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  o.  B )  e.  _V )

Proof of Theorem cofunexg
StepHypRef Expression
1 relco 5505 . . 3  |-  Rel  ( A  o.  B )
2 relssdmrn 5528 . . 3  |-  ( Rel  ( A  o.  B
)  ->  ( A  o.  B )  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
) )
31, 2ax-mp 5 . 2  |-  ( A  o.  B )  C_  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B
) )
4 dmcoss 5262 . . . . 5  |-  dom  ( A  o.  B )  C_ 
dom  B
5 dmexg 6716 . . . . 5  |-  ( B  e.  C  ->  dom  B  e.  _V )
6 ssexg 4593 . . . . 5  |-  ( ( dom  ( A  o.  B )  C_  dom  B  /\  dom  B  e. 
_V )  ->  dom  ( A  o.  B
)  e.  _V )
74, 5, 6sylancr 663 . . . 4  |-  ( B  e.  C  ->  dom  ( A  o.  B
)  e.  _V )
87adantl 466 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  o.  B
)  e.  _V )
9 rnco 5513 . . . 4  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )
10 rnexg 6717 . . . . . 6  |-  ( B  e.  C  ->  ran  B  e.  _V )
11 resfunexg 6127 . . . . . 6  |-  ( ( Fun  A  /\  ran  B  e.  _V )  -> 
( A  |`  ran  B
)  e.  _V )
1210, 11sylan2 474 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  ran  B )  e.  _V )
13 rnexg 6717 . . . . 5  |-  ( ( A  |`  ran  B )  e.  _V  ->  ran  ( A  |`  ran  B
)  e.  _V )
1412, 13syl 16 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  |`  ran  B
)  e.  _V )
159, 14syl5eqel 2559 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  o.  B
)  e.  _V )
16 xpexg 6587 . . 3  |-  ( ( dom  ( A  o.  B )  e.  _V  /\ 
ran  ( A  o.  B )  e.  _V )  ->  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B ) )  e. 
_V )
178, 15, 16syl2anc 661 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  e.  _V )
18 ssexg 4593 . 2  |-  ( ( ( A  o.  B
)  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  /\  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  e.  _V )  ->  ( A  o.  B
)  e.  _V )
193, 17, 18sylancr 663 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  o.  B )  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767   _Vcvv 3113    C_ wss 3476    X. cxp 4997   dom cdm 4999   ran crn 5000    |` cres 5001    o. ccom 5003   Rel wrel 5004   Fun wfun 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596
This theorem is referenced by:  cofunex2g  6750  fin1a2lem7  8787  revco  12766  ccatco  12767  lswco  12770  isoval  15023  bcthlem4  21593  sseqval  28078  sinccvglem  28789
  Copyright terms: Public domain W3C validator