MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofunex2g Structured version   Unicode version

Theorem cofunex2g 6644
Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunex2g  |-  ( ( A  e.  V  /\  Fun  `' B )  ->  ( A  o.  B )  e.  _V )

Proof of Theorem cofunex2g
StepHypRef Expression
1 cnvexg 6626 . . . 4  |-  ( A  e.  V  ->  `' A  e.  _V )
2 cofunexg 6643 . . . 4  |-  ( ( Fun  `' B  /\  `' A  e.  _V )  ->  ( `' B  o.  `' A )  e.  _V )
31, 2sylan2 474 . . 3  |-  ( ( Fun  `' B  /\  A  e.  V )  ->  ( `' B  o.  `' A )  e.  _V )
4 cnvco 5125 . . . . 5  |-  `' ( `' B  o.  `' A )  =  ( `' `' A  o.  `' `' B )
5 cocnvcnv2 5449 . . . . 5  |-  ( `' `' A  o.  `' `' B )  =  ( `' `' A  o.  B
)
6 cocnvcnv1 5448 . . . . 5  |-  ( `' `' A  o.  B
)  =  ( A  o.  B )
74, 5, 63eqtrri 2485 . . . 4  |-  ( A  o.  B )  =  `' ( `' B  o.  `' A )
8 cnvexg 6626 . . . 4  |-  ( ( `' B  o.  `' A )  e.  _V  ->  `' ( `' B  o.  `' A )  e.  _V )
97, 8syl5eqel 2543 . . 3  |-  ( ( `' B  o.  `' A )  e.  _V  ->  ( A  o.  B
)  e.  _V )
103, 9syl 16 . 2  |-  ( ( Fun  `' B  /\  A  e.  V )  ->  ( A  o.  B
)  e.  _V )
1110ancoms 453 1  |-  ( ( A  e.  V  /\  Fun  `' B )  ->  ( A  o.  B )  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1758   _Vcvv 3070   `'ccnv 4939    o. ccom 4944   Fun wfun 5512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526
This theorem is referenced by:  fsuppco  7754
  Copyright terms: Public domain W3C validator