MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu1st Structured version   Unicode version

Theorem cofu1st 15110
Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b  |-  B  =  ( Base `  C
)
cofuval.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
cofuval.g  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
Assertion
Ref Expression
cofu1st  |-  ( ph  ->  ( 1st `  ( G  o.func 
F ) )  =  ( ( 1st `  G
)  o.  ( 1st `  F ) ) )

Proof of Theorem cofu1st
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofuval.b . . . 4  |-  B  =  ( Base `  C
)
2 cofuval.f . . . 4  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
3 cofuval.g . . . 4  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
41, 2, 3cofuval 15109 . . 3  |-  ( ph  ->  ( G  o.func  F )  =  <. ( ( 1st `  G )  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) >. )
54fveq2d 5870 . 2  |-  ( ph  ->  ( 1st `  ( G  o.func 
F ) )  =  ( 1st `  <. ( ( 1st `  G
)  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F ) `
 x ) ( 2nd `  G ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) ) >. ) )
6 fvex 5876 . . . 4  |-  ( 1st `  G )  e.  _V
7 fvex 5876 . . . 4  |-  ( 1st `  F )  e.  _V
86, 7coex 6736 . . 3  |-  ( ( 1st `  G )  o.  ( 1st `  F
) )  e.  _V
9 fvex 5876 . . . . 5  |-  ( Base `  C )  e.  _V
101, 9eqeltri 2551 . . . 4  |-  B  e. 
_V
1110, 10mpt2ex 6860 . . 3  |-  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) )  e.  _V
128, 11op1st 6792 . 2  |-  ( 1st `  <. ( ( 1st `  G )  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) >. )  =  ( ( 1st `  G
)  o.  ( 1st `  F ) )
135, 12syl6eq 2524 1  |-  ( ph  ->  ( 1st `  ( G  o.func 
F ) )  =  ( ( 1st `  G
)  o.  ( 1st `  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767   _Vcvv 3113   <.cop 4033    o. ccom 5003   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286   1stc1st 6782   2ndc2nd 6783   Basecbs 14490    Func cfunc 15081    o.func ccofu 15083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-map 7422  df-ixp 7470  df-func 15085  df-cofu 15087
This theorem is referenced by:  cofu1  15111  cofucl  15115  cofuass  15116  catciso  15292
  Copyright terms: Public domain W3C validator